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Abstract 

 This study focuses on conducting spatial analysis of COVID-19 at the district level 

in India. Leveraging data from www.covidindia.org for confirmed cases and deaths, and 

integrating population characteristics from the National Family Health Survey 5 (2019-

2021) and supplementary sources. The objective is to identify risk factors using spatial 

modelling techniques while addressing multicollinearity through principal component 

analysis (PCA). This study utilizes spatial analysis to identify COVID-19 hotspots and 

cold spots at the district level in India. It highlights highly affected districts such as 

Mumbai, Pune, Chennai, Kolkata, and Bengaluru, as well as low affected districts in 

central and north-eastern regions. The study utilized the spatial lag model (SLM), spatial 

error model (SEM), geographical weighted regression (GWR), and multiscale 

geographical weighted regression (MGWR) models to analyze the impact of 

demographic, socioeconomic, climatic, and comorbidity factors on COVID-19, 

accounting for spatial proximity. Among these models, MGWR exhibited superior 

performance. Key risk factors associated with the COVID-19 phenomenon identified, 

providing insights into the impact of household conditions, educational level of women, 

tobacco and alcohol consumption rates, number of health centres, and climatic factors. 

Moreover, the local coefficients estimated by MGWR model furnish detailed information 

regarding the strength and direction of the relationships between predictors and COVID-

19 cases and deaths within each spatial unit. The findings emphasize the significance 

of addressing multicollinearity in spatial modelling. It is beneficial for accurate parameter 

estimation, proper interpretation of coefficients, improved spatial analysis, and providing 

reliable insights to support decision-making in spatial contexts.  
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1. Introduction 

Many previous research found that the existence of social inequalities can contribute 

to circumstances that make it easier for the disease to spread, thereby making it more 

difficult to control the pandemic (Ahmed et al., 2020). Poor living conditions (Pereira & 

Oliveira, 2020), population density (Gupta et al., 2020), inadequate access to 

healthcare, and a large population of susceptible population, such as the older and 

those with existing medical conditions (Dutta et al., 2021), are all factors that make 

any region vulnerable to the spread of the virus. In addition, the severity of COVID-19 

in China was found to have a positive association with temperature (Chen et al., 2020). 

A comparable relationship between temperature and COVID19 cases has been 

discovered in various countries, including India (Gupta et al., 2020), Indonesia 

(Tosepu et al., 2020), and on a global scale (Chen et al., 2020). Some other factors 

like the prevalence of slums within cities (Sridhar, 2023), smoking habits (Puebla Neira 

et al., 2021), and many more contribute to an increased risk of transmission and 

disparities in access to prevention and treatment measures. 

Infectious disease transmission is linked to geographical proximity, as the 

transmission is more likely if at-risk individuals are close in spatial proximity. 

Incorporating the spatial dimension into epidemiological investigations allows for more 

informative descriptive analysis and the acquisition of additional insights into the 

causal process under study (Mollalo & Khodabandehloo, 2016; Pfeiffer et al., 2008). 

Spatial models have become vital in examining and interpreting the spread of COVID-

19 channelling. The spatial distribution of COVID-19 in Iran, Bangladesh, and some 

European countries has been studied (Adekunle et al., 2020; Dutta et al., 2021; Sarkar 

et al., 2021). They used various spatial models, such as spatial lag model (SLM), 

spatial error models (SEM), geographically weighted regression (GWR), and multi-

scale geographical weighted regression (MGWR) to determine the clustered regions 

with high or low COVID-19 incidence in different countries. 

Spatial models have demonstrated their utility in comprehending and assessing 

pandemic dynamics. However, there are instances where the presence of correlated 

risk factors can lead to the challenge of multicollinearity when using these models. 

Multicollinearity refers to the presence of high correlation among independent 

variables in a regression analysis, restrict the precision of parameter estimates and 

make it challenging to discern the individual effects of variables. Several research 

papers have highlighted the issue of multicollinearity while employed spatial models 

for pandemic analysis. For example, a study which is focused on spatial modelling of 

dengue transmission in Mexico. The authors found that including various spatial 

variables, such as population density and climatic factors, resulted in high 

multicollinearity among these variables. This multicollinearity limited the ability to 

accurately estimate the effects of individual variables and affected the model’s 

predictive power (Dzul-Manzanilla et al., 2021). Another study examined the spatial 

distribution of COVID-19 in China. The authors utilized a spatial autoregressive model 

to capture the spatial dependence among neighbouring regions. However, they 

encountered multicollinearity issues when including multiple socioeconomic variables, 

such as population density, income level, and healthcare resources. The high 

correlation among these variables made it challenging to ascertain their distinct 

influences on COVID-19 transmission (Wang et al., 2021). Various approaches have 
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been suggested by researchers to address this issue, with Principal Component 

Analysis (PCA) emerging as a popular choice. PCA is employed to convert 

interrelated variables into uncorrelated components, thereby diminishing 

multicollinearity while retaining essential information (Shen & Zhu, 2015).  

This study conducted a specific analysis for each wave of the COVID-19 pandemic 

outbreak in India to examine the impact of district-level vulnerabilities on the spread 

of the virus. Spatial proximity was taken into account in assessing the influence of 

independent factors on the spatial dispersion of COVID-19 during the first two waves. 

Four spatial models- SLM, SEM, GWR, MGWR, were utilized to capture spatial 

dependencies and variations in the relationships between independent variables and 

COVID-19 outcomes. Although Spatial models offer valuable insights into the 

behavior of pandemics; they frequently encounter the issue of multicollinearity. To 

address this challenge, PCA can be employed as an appropriate technique to mitigate 

multicollinearity in spatial models. Through the utilization of PCA in the spatial models, 

this research has the potential to successfully mitigate the issue of collinearity among 

variables, resulting in improved accuracy and interpretability of their models. The 

findings from this analysis can support public health officials and policymakers in 

identifying hotspots, monitoring the spread, identifying disparities, and evaluating the 

effectiveness of interventions. 

 
2. Methodology 

This study used statistical and geographical techniques to analyze the geographic 

distribution of diseases and health outcomes and to identify patterns, relationships, 

and risk factors that can inform public health planning and decision-making. A 

common framework for conducting spatial analysis in epidemiology involves 

integrating geographic information with epidemiological data to examine the spatial 

distribution of disease and the relationship between disease and geographic variables. 

Figure 1 is a diagrammatic representation of conceptual framework adapted for this 

study.  

 

Figure 1: Framework of this study 
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The specific analytic objectives lead to three analytical methods: visualization, 

exploration, and modelling. The first two groups cover techniques solely concerned 

with examining data’s spatial dimension and modelling explored or predicting cause 

and effect associations using both spatial and non-spatial data sources. Our study 

included districts from all states and union territories in India, except six states 

(Assam, Delhi, Goa, Manipur, Telangana, Sikkim) with no COVID-19 updates at the 

district level in the state bulletin. This study took into account district boundaries as of 

2019 (figure 2 provides the district’s name and boundaries, which aid in understanding 

all the maps presented in the study).  

We extracted district-level data on daily confirmed cases of COVID-19 and 

associated deaths in India for this study from the website www.covidindia.org. This 

public domain collects data through state bulletins and official handles. They halted 

the operation after 18 months of daily updates. As a result, this study limits the 

analysis of data till October 2021. 

 

Figure 2: India administrative boundaries as of 2019 

Source: googlesand.blogspot.com 

2.1 Data Collection and Preparations 

So far, several variables have impacted COVID-19 spread during these pandemic 

outbreaks, from which some of the essential independent variables that may have 

affected COVID-19 spread in Indian districts have been selected. Table 1 lists these 

independent variables, their descriptions containing the reason behind taking these 

variables in our study, and the sources from which they were derived.  India has 

experienced multiple waves of COVID-19 since the pandemic began. It is worth noting 
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that these waves need to be clearly defined. India has undergone several surges of 

COVID-19 since the onset of the pandemic. Specifically, India encountered two 

distinct waves of COVID-19 between December 2019 and October 2021. These 

waves occurred during the periods of March 2020 to December 2020 and January 

2021 to October 2021, respectively. 

 

Table 1: List of independent variables, descriptions/ justifications and the sources. 

S.no. Indicators/ Abbreviation Assumptions/ Justifications Data sources 

1 

Population living in 
households that use an 
improved sanitation 
facility (ISF) 

The environment in which 
people live plays a significant 
role in the transmission of 
COVID-19. Factors such as 
overcrowding, sanitation and 
hand hygiene all contribute to 
susceptibility and should not be 
overlooked. 

National 

Family 

Health Survey 

(NFHS-5) 

(2019-21) 

(District 
factsheet) 

2 
 
Households using clean 
fuel for cooking (CF) 

3 

 
Population living in 
households with 
electricity (Elec) 

4 
Population below age 15 
years (age-15) 

Older population have higher 
risk of death after infected. 

5 

Households with any 
usual member covered 
under a health 
insurance/ financing 
scheme (HI) 

Accessible healthcare systems, 
affordability, capacity, and 
health security are vital for 
managing epidemics and 
promoting treatment-seeking. 

6 Women who are literate 
(LW) 

Women’s literacy empowers 
them with knowledge, enabling 
them to understand COVID-19 
prevention, access reliable 
information, and make 
informed decisions. 

7 

 

Educated women with 

10+ years of schooling. 
(LW 10+) 

8 
Adults’ blood sugar 
levels (age 15+). 

Blood Sugar Level and 
Hypertension among Adults 
(age 15+) may regulate the 
severity of COVID-19 cases. 

9 

 

Hypertension among 

Adults (age 15+) (HT) 

10 
Tobacco uses among 
those 15+ (TP) 

Smoking or tobacco or any kind 
of alcohol being exposed in any 
form can reduce the risk of 
COVID-19 infection (WHO 
2020). 

11 
 
Alcohol use among 
those 15+. (AP) 

12 
Population Density 
(density) 

High population density and 
urban areas posing a higher 
risk for the spread of the highly 
contagious SARS-CoV-2 virus. 

Office of the 
Registrar 
General of 
India 
 

13 
 
Proportion of urban 
population (urban) 
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14 Health Center [Sub 

center + 

PHCs+ CHCs] (HC) 

Higher population per 
healthcare institution indicates 
lower resilience in dealing with 
COVID-19. 

Rural Health 

statistics 

15 
Average temperature 
(temp) 

The severity of COVID-19 is 
found to have a positive 
relationship with temperature 

NASA open 

data portal 

16 
Proportion of poor 
population(poor) 

Studies have shown that areas 
with high poverty rates tend to 
have higher rates of COVID-19 
infections. 

Global Data 
Lab 

2.2 Study Area and Descriptive Statistics  

The study area for this research is India, located in South Asia and positioned 

geographically between latitudes 8°4' and 37°6' north and longitudes 68°7' and 97°25' 

east. India shares its borders with Pakistan to the northwest, China and Nepal to the 

north, Bhutan to the northeast, and Bangladesh and Myanmar to the east, while the 

Indian Ocean bounds it to the south. India boasts diverse landscapes, ranging from 

the Himalayan Mountain range in the north to coastal regions in the south, 

experiencing various climates, including tropical, subtropical, arid, and alpine, 

contributing to agricultural and ecological diversity. As the world's second-most 

populous country with over 1.3 billion people, India is administratively divided into 

districts, totaling 640 as of 2019. In the context of the first two waves of COVID-19, 

this research focuses on 16 dependent variables and two independent variables—

TCC and deaths—utilizing data from 626 districts (due to data unavailability), resulting 

in a comprehensive dataset of approximately 10,000 observations for spatial and 

statistical analysis. 

In the initial and subsequent phases of the pandemic, specific Indian districts, 

including Bangalore, Mysuru, Belagavi, Pune, Mumbai, Thane, Nagpur, Ernakulam, 

Malappuram, Nashik, Kollam, Kolkata, Chennai, Coimbatore, Chittoor, among others 

in Kerala, Tamil Nadu, Andhra Pradesh, and West Bengal, experienced heightened 

COVID-19 cases and deaths. Geographical variations were evident, with northern and 

central states like Lucknow, Varanasi, Kanpur, Jaipur, Jodhpur, Ludhiana, and 

Jalandhar significantly affected, while areas like Hathras, Mahoba, Burhanpur, Agar 

Malwa, Mandla, and Baranala reported fewer cases. Generally, central and 

northeastern regions had lower confirmed cases and deaths in both waves. 

The data indicates higher population density in Bihar, West Bengal, and Kerala, 

with 29 districts among the top 10%. On average, 4.24% of the population in these 

districts is aged 65 and above. Notably, Maharashtra, Kerala, Karnataka, Goa, and 

Punjab show a significant prevalence of districts with an aging population. Specifically, 

15 out of Maharashtra's 36 districts and 9 out of Kerala's 14 districts rank in the top 

10% for the percentage of elderly population. On average, 20.19% of households in 

Indian districts lack water supply within their premises. The data reveals pronounced 

water supply challenges in numerous districts of Odisha, Madhya Pradesh, and 

Rajasthan. Additionally, 10 districts in Andhra Pradesh and 5 in Maharashtra fall into 

this category. Kerala, Goa, Tamil Nadu, and Andhra Pradesh also exhibit a significant 

presence of districts with the highest percentages (>7.5%) of the population facing 
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elevated blood sugar levels. 

The data highlights specific districts in Rajasthan, such as Jaisalmer and Barmer, 

known for extremely high temperatures. Districts in the northern plains, including parts 

of Uttar Pradesh, Bihar, and Haryana, may also experience high temperatures. 

Gujarat, Maharashtra, and certain parts of Kerala might encounter high humidity 

levels. Notably, alcohol and tobacco consumption are high in districts of northeastern 

states, Punjab, Goa, and select districts in Rajasthan. 

According to the National Family Health Survey (NFHS-5), approximately 41% of 

India's total population has at least one member enrolled in health insurance or a 

health scheme. Rajasthan and Andhra Pradesh lead with the highest proportions of 

households covered (88% and 80%, respectively), while the Andaman and Nicobar 

Islands and Jammu and Kashmir show the lowest coverage, each below 15%. 

2.3 Visualization  

By using visualization techniques, patterns and discrepancies in the data can be 

identified. The most widely used approach for visualizing this type of data is through 

choropleth maps that employ quantile breaks. These maps use various colors to depict 

the intensity of variables of interest in each geographic region. With quantile breaks, 

the data distribution is divided into five segments: extremely low, low, medium, high, 

and extremely high. Visualization allows for the identification of patterns and errors in 

the data. 

2.4 Exploration  

Spatial data exploration involves the application of statistical methods to determine 

whether observed spatial patterns are random. Cluster analysis can be performed 

using either nonspecific (global) or specific (local) techniques. In order to use 

statistical methods that take spatial dependencies into account, a spatial weight matrix 

must be generated to describe how observations in a dataset are related to each other. 

In this study, a queen contiguity matrix was used, where neighbouring units are 

defined as sharing a common boundary or vertex. Global techniques are utilized to 

determine the presence of clustering across the entire study area but do not provide 

precise information on cluster locations. These methods generate a single statistic 

that quantifies the degree of spatial clustering, which can be evaluated for statistical 

significance. The most commonly used measure for this purpose is Moran’s I statistic, 

which is a widely accepted indicator of global spatial autocorrelation. Moran’s, I 

calculate global spatial autocorrelation among observations and ranges from -1 to 1. 

Negative Moran’s I value indicate dispersion (clustering of dissimilar values), positive 

values indicate clustering (clustering of similar values), and values close to zero 

represent absolute spatial randomness, i.e., no autocorrelation (Tu & Xia, 2008). 

However, Moran’s I statistic is incapable of detecting structural instability in the 

dataset. To identify spatial non-stationarity or locations of outliers, the LISA (local 

indicators of spatial association) tool was utilized to calculate local spatial 

autocorrelation. This tool describes significant correlations at specific locations as 

local spatial clusters (hot spots) or correlations between observations and 

neighbouring observations (Anselin, 1995). 
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2.5 Modelling  

This section incorporates regression modelling to measure the impact of independent 

variables on the spatial dispersion of a specific outcome. The assumption of 

independence of observations is fundamental to many classical statistical methods. If 

a dataset exhibits spatial dependencies, this assumption is violated. Incorporating the 

spatial dimension into epidemiological investigations makes conducting more 

informative descriptive analyses and obtaining further insights into the underlying 

causal processes possible. In this study, spatial regression models were employed to 

measure the impact of independent variables on the spatial dispersion of a particular 

outcome, taking into account spatial dependencies. The spatial regression models 

included: SLM, SEM, GWR, and MGWR. 

Multicollinearity poses a common challenge in utilizing spatial models to gain 

insights into pandemic behavior. To tackle this issue, the present study employed PCA 

as a means of addressing multicollinearity. PCA is a statistical technique commonly 

employed to uncover underlying latent factors within a dataset. PCA aims to reduce 

the dimensionality of the original variables by identifying linear combinations, known 

as principal components, that capture the maximum amount of variation in the data. 

By extracting these components, which are ordered based on the amount of variance 

they explain, PCA allows for a more concise representation of the data while retaining 

as much information as possible. This technique is particularly useful in mitigating 

multicollinearity issues in spatial models, as it helps identify independent factors that 

contribute significantly to the overall variance, thus aiding in the interpretation and 

understanding of the relationships between variables. To facilitate additional analysis, 

these components obtained were employed as independent variables in the spatial 

The SLM (eq-1) was used to estimate the impact of independent variables on the 

dependent variable while accounting for spatial dependency. The SEM (eq-2) 

extended the classical regression model and accounted for spatial dependence in the 

disturbance term. The SLM model with 𝑛 number of observations, and 𝑚 number of 

independent variables presented in equation 1. 

 
                             𝑦 =  𝜌𝑊𝑦 +  𝑋𝛽 +  𝜖                             (1)   
 

where  𝑦 as the 𝑛 ×  1 vector of dependent variable, 𝑋 as the 𝑛 ×  𝑚 matrix of 

independent variables, 𝛽 as the vector of regression coefficients, the spatial 

autocorrelation coefficient of 𝑦 represented by 𝜌, 𝑊 as spatial weight matrix and 𝜖 is 

random error. Equation 2 presented SEM model with µ  vector of spatially dependent 

disturbance terms, and 𝜆 its spatial autocorrelation coefficient. 

 
                  𝑦 =  𝑋𝛽 +  µ, µ =  𝜆𝑊µ +  𝜖                          (2)        

                  

The SLM and SEM models assumed spatial stationarity, meaning that the 

relationships between dependent and independent variables did not vary across 

space. In contrast, the GWR model (eq-3) estimated local interactions between the 

dependent and independent variables by fitting a regression model to each feature in 

the dataset (Oshan et al., 2019). Finally, the MGWR model was an extension of the 
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GWR model that studied the relationships of independent and dependent variables at 

different spatial scales by using varying bandwidths to define the neighbourhood 

around each feature rather than a single, constant bandwidth for the entire study area 

(Fotheringham et al., 2017).  The GWR model is presented by equation 3 given below 

 
                                      𝑦 = ∑ 𝑋𝑖𝑗𝛽𝑖𝑗 +∈𝑖           𝑖 = 1,2,3, … . , 𝑛.                   (3)𝑚

𝑗=1   

 

and parameters estimates for each independent variable at 𝑖 𝑡ℎ  location is given by 

 

                                         �̂�(𝑖) = (𝑋′𝑊(𝑖)𝑋)−1 (𝑋′𝑊(𝑖)𝑦)                                  (4)  

 

where �̂�(𝑖) is 𝑚 × 1 vector of parameter estimates, 𝑊(𝑖) is spatial weight matrix 

calculated by the Gaussian kernel function and the bandwidth which is based on 

Euclidean distance. MGWR model presented in equation 5 with  𝛽𝑏𝑤𝑗  as the bandwidth 

used for calibration of the 𝑗 𝑡ℎ  relationship. 

 
                                        𝑦𝑖 = ∑ 𝑋𝑖𝑗𝛽𝑏𝑤𝑗 +∈𝑖   𝑖 = 1,2,3, … . , 𝑛.                     (5)𝑚

𝑗=1  

 

The analysis on SEM, SLM, spatial association (Global Moran’s I and LISA) was 

done using GeoDa software while the GWR and MGWR model was done using MGWR 

2.2.1 software. R2 and AIC were used to compare the performances of various models, 

explaining total COVID-19 confirmed cases and deaths. R-square measures the 

goodness of fit; its values range from 0 to 1. Furthermore, Akaike information criteria 

(AIC) is a model performance measure that can compare predictive models while 

accounting for model complexity. The model with lower AIC value and higher value of 

R2 better fits the observed data. 

 

3. Results  
3.1 Visualization & Exploration 

This study employed choropleth maps using quantile breaks to visualize the total 

confirmed cases and total deaths during the pandemic outbreak, yielding successful 

results. Referring to Figure 3, the districts that exhibited the highest numbers of 

confirmed COVID19 cases and deaths were Bangaluru, Mysuru, Belagavi, and 13 

other districts in Karnataka.  
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 (a) (b) 

 

 (c) (d) 

Figure 3: Quantitative spatial distribution of (a, c) total number of confirmed cases of 
COVID19, (b, d) total number of deaths associated with COVID-19 in 1st wave and 2nd 

wave respectively in Indian districts. 

Additionally, in Maharashtra, the districts of Pune, Mumbai, Thane, Nagpur, and 29 

out of 35 districts stood out. Similar trends were observed in Kerala, Tamil Nadu, 

Andhra Pradesh, and West Bengal, particularly in districts such as Ernakulam, 

Malappuram, Nashik, Kollam, Kolkata, Chennai, Coimbatore, Chittoor, and their 

adjacent districts. These districts were among the most affected during the entire 

duration of the pandemic analyzed in this study.  

There were marked geographical distinctions among the northern and central 

states of India, with some districts like Lucknow, Varanasi, Kanpur, Jaipur, Jodhpur, 

Ludhiana and Jalandhar experiencing a high level of contagion while other areas like 

Hathras, Mahoba, Burahnpur, Agar Malwa, Mandla and Baranala and the locations 
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around them having a much lesser effect. In contrast, the central and northeastern 

regions districts of had the fewest confirmed cases and deaths in both waves. 

 

 
 

(a) (b) 

 

(c)                                                                     (d) 

 

Figure 4: LISA clusters of (a, c) total number of confirmed cases of COVID-19, (b, d) 
total number of deaths associated with COVID-19 in 1st wave and 2nd wave 

respectively in Indian districts. 

The global Moran’s I statistic values for cumulative confirmed cases and deaths 

due to COVID-19 were significant for both waves (0.31, 0.43, and 0.27, 0.43, 

respectively, with p-value< 0.05), indicating strong spatial autocorrelation among 

Indian districts. Further, the LISA tool was employed to identify significant local 

clustering and detect non-clustered areas within the study that may be missed by 

global tests.  
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Using the LISA tool, the study found that the districts with the highest concentration 

of confirmed cases and deaths during both waves were the same, including 

Maharashtra, Kerala, Andhra Pradesh, West Bengal, and Karnataka. In contrast, the 

northern and central regions exhibited low clustering during the first wave, and the 

central region was also identified as having low clustering in the second wave (see 

figure-4) and only a few districts fell into the high-low and low-high clusters. 

3.2 Modelling  
3.2.1. Multicollinearity 

Condition index, Variance Inflation Factor (VIF) and tolerance offer valuable 
information regarding the existence and intensity of multicollinearity in a regression 
model. High condition index, high VIF, and low tolerance suggest a high degree of 
multicollinearity among independent variables. 

Table 2: Summary table provides the VIF and tolerance values for all the                  

independent variables 

Variables Tolerance VIF 

Age (-15) 0.361 2.772 

Elec 0.637 1.57 

ISF 0.382 2.619 

CF 0.298 3.359 

HI 0.666 1.502 

WL 0.172 5.799 

WL (10+) 0.187 5.34 

TP 0.315 3.173 

AP 0.619 1.616 

density 0.765 1.308 

urban 0.396 2.527 

HC 0.954 1.048 

temp 0.572 1.748 

poor 0.347 2.88 

HT 0.55 1.817 

diab 0.423 2.365 

 
 

Table 3: Summary table provides the condition Index (CI) values for all the 

dimensions of the model.   

Model 
dimension  

1 2 3 4 5 6 7 8 9 

CI 1 4.77 5.04 5.29 5.39 7.4 12.5 12.74 12.89 

Model 
dimension  

10 11 12 13 14 15 16 17 
 

CI 13.27 13.36 13.7 24.21 24.79 25.31 25.44 27.96 
 

 

In the present study, the table 2&3 reveals that all independent variables have VIF 

values ranges 1 to 6, tolerance values less than 0.8 and condition index nearly 30. 

This pattern clearly indicates a moderate level of multicollinearity among the variables, 
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emphasizing the challenges in discerning their distinct effects. In order to mitigate 

multicollinearity, this study employed PCA, by extracting a smaller set of uncorrelated 

variables, referred as components. The suitability of the data for PCA was assessed 

using measures such as the Kaiser-Meyer-Olkin (KMO) test or Bartlett’s test of 

sphericity. These tests (KMO=0.779, and p-value for Bartlett’s test of 

sphericity=0.0001) provided insights into the appropriateness of applying factor 

analysis to the dataset, ensuring that the assumptions and requirements of the 

analysis were met. 

Based on the Kaiser criterion, which suggests retaining principal components with 

eigenvalues exceeding 1 as they account for substantial variation in the original 

dataset, five components were retained for further analysis. To aid in the interpretation 

of the PCA, a varimax rotation was applied. The rotated component matrix was 

examined, and variables with a loading threshold of 0.7 were considered to have the 

most influence on each component. 

 

Table 4: Loadings of the varimax rotated components 

Rotated Component Matrix  

  Variables  Component  

 1 2 3 4 5 

Age (-15) -.801 -.171 -.077 .136 .075 

Elec .551 .134 -.295 -.349 -.178 

ISF .765 -.117 .119 -.046 .055 

CF .773 .206 -.208 .230 -.001 

HI .064 .308 .239 -.744 -.034 

LW .846 -.009 .096 .041 -.003 

LW (10+) .855 .043 .102 .203 .098 

TP -.670 -.299 .719 -.038 -.149 

AP -.020 -.110 .898 -.143 -.059 

density .105 .429 .048 .617 -.118 

urban .580 .449 -.143 .280 -.095 

HC .075 .015 -.009 -.034 .949 

temp -.220 .801 -.161 -.129 -.002 

poor -.796 .156 -.048 .212 -.046 

HT .392 .643 .108 .026 .069 

diab .576 .171 .499 .025 .176 

 

Referring to the information presented in Table 4, it can be observed that the first 

component exhibited high loadings on variables associated with age, poor housing 

conditions, and education level among women (Age (-15), ISF, CF, Poor, WL, and WL 

(10+)). This indicates that these variables exerted a significant influence on the first 

component. Component 2, on the other hand, demonstrated a dominant effect of 

climatic factors, specifically the average temperature. The third component was found 

to be associated with alcohol and tobacco consumption, implying that smoking and 

alcohol habits may play a crucial role in the transmission of the virus. The fourth 
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component pertained to health insurance, while the fifth component represented the 

total number of health centers, encompassing sub-centers, Primary Health Centers 

(PHCs), and Community Health Centers (CHCs). 

3.2.2. Comparison of Spatial Models 

The data for all the independent variables taken in this study covers a time period of 

2019 prior to the pandemic, with a constant value for both waves. To investigate the 

effects of these variables on COVID-19 cases and associated deaths, analyzed the 

data as a whole duration. This study used four spatial model (SLM, SEM, GWR, 

MGWR) to measure the impact of independent variables on the spatial dispersion of 

COVID-19 cases and deaths. 

Results of the spatial modelling show that all five components have a statistically 

significant influence on the impact of COVID-19 in Indian districts. However, the level 

of influence varies among the models, and these associations remain consistent 

across all models, regardless of the spatial dependencies included. Based on the AIC 

score and R-square value, the MGWR model provides the best fit for the entire period 

(see table 5). The results of the MGWR model offer a reasonable explanation for the 

variation in COVID-19 confirmed cases and deaths across Indian districts. The 

coefficient estimates for all factors in the MGWR model will be interpreted in the 

following section. 

Table 5: Comparison criteria for spatial regression model. 

  SLM SEM GWR MGWR 

Tcc R2 0.40 0.41 0.52 0.57 

 AIC 1490 1495 1380 1359 

Deaths R2 0.42 0.44 0.60 0.65 

 AIC 1485 1432 1395 1222 

3.2.3. MGWR model summary 

The table 6 presents the summary statistics of the MGWR model, providing a 

comprehensive overview of the model’s results and key statistical measures. The 

MGWR, a local regression model that allows for spatially varying coefficients, was 

used to examine the percentage of variation explained by different spatial units. 

Analysis showed significant spatial variability in the R-squared approximation, with 

generally large values observed across districts, indicating that the regression 

analysis successfully explained most of the variation in the dependent variable. 

However, low R-squared values in some regions suggest that unexpected differences 

exist that are not fully captured by the independent variables in the regression model. 

To explore the relationship between independent variables and TCC and the total 

number of deaths due to COVID-19, we mapped the R-squared values for each of the 

626 districts in India. With reference to the table 5 & figure 5 and 6, the local R-squared 

for TCC varied between 0.75 and 0.010, indicating that some local models fit better 

than others. A spatial regularity was observed in the distribution of R-squared values, 

with the most significant proportion of variation explained by the five components in 

more prominent parts of Madhya Pradesh- Sagar, Jabalpur, Narshimpur, Raisen 

districts have value of R2 is 0.75, and districts like Porbandar, Junagarh, Somnath 
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districts of Gujarat have value of R2 is 0.74. Further, districts of Maharashtra, Gujarat, 

Uttar Pradesh, West Bengal, and some district of Chhattisgarh demonstrating 55% to 

65% of the variation in the data. The high explanatory power of independent variables 

was found in these districts. A notable interaction was discovered between the 

independent variables adopted in the study and TCC across numerous districts in 

Karnataka, including Vijayapura, Belagavi, and 13 others, Jharkhand, with Dhanbad, 

Sahibganj, and 8 other districts, Bihar, and areas nearby Maharashtra, Madhya 

Pradesh, Gujarat, and West Bengal. These variables accounted for 45-65% of the 

variance in TCC across these districts. 

 

         Table 6: Summary statistics for MGWR parameter estimates 

 Variable Bandwidth Mean STD Max Median Min 

 

Intercept 

PC1 

PC2 

PC3 

625 

43 

380 

625 

-0.096 

0.31 

0.108 

-0.021 

0.009 

0.452 

0.151 

0.006 

-0.113 

-0.197 

-0.19 

-0.029 

-0.098 

0.19 

0.141 

-0.02 

-0.079 

3.22 

0.258 

-0.012 

 PC4 89 0.132 0.211 -0.263 0.077 1.041 

 PC5 545 0.03 0.066 -0.008 -0.002 0.214 

 Variable Bandwidth Mean STD Max Median Min 

 

Intercept 

PC1 

PC2 

PC3 

625 

43 

380 

625 

-0.086 

0.305 

0.072 

-0.047 

0.006 

0.51 

0.128 

0.039 

-0.097 

-0.16 

-0.196 

-0.143 

-0.087 

0.167 

0.133 

-0.024 

-0.074 

4.224 

0.188 

-0.004 

 PC4 89 0.19 0.294 -0.073 0.105 1.468 

 PC5 545 0.021 0.042 -0.053 0.005 0.118 
TCC- Total number of confirmed cases, Deaths- total number of deaths, Mean, Median, Max, Min- 

mean, median, maximum and minimum value for the coefficient estimate, STD-standard deviation, 

Bandwidth-number of neighbours used for the estimation 

 

The MGWR model highlighted a positive relationship between TCC and 1, 2, 4 and 

5 components and a negative association with component 3 in these regions, with 

significant R-squared values. In these regions, the average coefficient value for 

component 1, which represents age, educational level, and housing condition, was 

0.310. Component 2, which indicates average temperature, was associated with a 

0.10% increase in TCC per unit increase in these components in a specific district. 

This component exhibited higher coefficient values, particularly in districts with high 

average temperatures. Components 4 and 5, which reflect the dominant effects of 

health insurance and health centers, showed a positive association with TCC. On the 

other hand, component 3, representing alcohol and tobacco consumption, associated 

with TCC. This suggests that districts with higher alcohol and tobacco consumption 

highly affected by COVID-19. The variables utilized in this study were unable to 

explain the variation in the districts of the northeastern region and some districts of 

Punjab (such as Bhatinda, Faridkot, Moga, and others with R2 < 0.05), Haryana (Sirsa, 

Panchkula with R2 < 0.17), Himachal Pradesh, JK, and Ladhak, where the R-squared 

values ranged from 0.02 to 0.35. Hence, the reason behind the anomalous ranges of 

coefficient estimates in these regions becomes apparent. 

The MGWR model was used to analyze the relationship between 16 independent 
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variables and the total number of COVID-19 cases and deaths in various districts of 

India. The results showed that the five components which is combination of these 

independent variables explained on an average 57% of the variance for total cases 

and 65% for deaths. The model variances were better captured for fatalities, with 

significantly increased explanatory capacity shown across the models. 

The most significant proportion of the variation considered local R-square values for 
the total number of deaths was explained by the 5 components in almost same districts 
of Madhya Pradesh, Maharashtra, Gujarat, Uttar Pradesh, West Bengal, Chhattisgarh 
where the R-square is high for the total number of confirmed cases. In these districts, 
these factors explain the variation in the total number of deaths associated with 
COVID-19 were 70% to 87%. Some fewer interaction effects were found between 
these components and the total number of deaths in the regions of Jammu Kashmir, 
Ladakh, Uttarakhand, Bihar, and Orissa, where factors used in this analysis can 
explain the 50% to 70% variation in the total number of deaths. 

Again, the MGWR Model reveals a positive relationship between the total number 

of deaths and components 1, 2, 4 and 5, while displaying a negative association with 

factor 3 in those regions, with a significant R-squared value. In these regions, the 

average coefficient value for component 1 is 0.305, indicating a dominant effect of 

age, educational level, and housing condition. It suggests that districts with favourable 

housing conditions, well-educated women, and a higher proportion of adults were 

most affected by COVID-19. Furthermore, a unit increase in component 2 is 

associated with a 0.072% increase in the total number of deaths. Components 4 and 

5 exhibit coefficient ranges of (-0.073, 1.468) and (-0.053, 0.118) respectively. 

However, their mean coefficient values are 0.195 and 0.021 respectively, suggesting 

that, on average, these components have a positive association with the total number 

of deaths. Similar to TCC, the total number of deaths in a particular district associated 

with tobacco and alcohol consumption. Nevertheless, the variables employed in this 

study are unable to account for the variation in the total number of deaths associated 

with COVID-19 in the districts of the northeastern region, Punjab, Haryana, and 

Karnataka. In these regions, the R-squared values are considerably low, ranging from 

0.02 to 0.22. 
 

 

 (a) (b) 
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 (c) (d) 

 

 (e) (f) 

Figure 5: Spatial distribution of MGWR coefficient estimates for (a) Component first, (b) 
Component second, (c) Component third, (d) Component forth, (e) Component fifth, (f) Local 

R-squared value for the total confirmed cases of COVID-19 in 626 districts of India 
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 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Figure 6: Spatial distribution of MGWR coefficient estimates for (a) Component first, (b) 
Component second, (c) Component third, (d) Component forth, (e) Component fifth, (f) Local 

R-squared value for the total number of deaths due to COVID-19 in 626 districts of India 
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4. Discussion  

The current research implemented spatial analysis techniques to analyze the spatial 
distribution and clustering of COVID-19 in Indian districts. The data indicated a 
significant spatial heterogeneity in the distribution of COVID-19 across the country, 
with clusters of cases and deaths found to be almost identical for both waves with high 
intensity. The main reason for the lack of change in hotspots from the first to the 
second wave is attributed to the need to identify and monitor hotspots in the first wave 
properly. Further, the resurgence of cases has been linked to mass gatherings and 
non-adherence to safety protocols such as wearing masks, social distancing, and 
handwashing. Significant clustering of COVID-19 cases was identified in specific 
districts, including Maharashtra, Kerala, Andhra Pradesh, West Bengal, and 
Karnataka, forming clusters characterized by high numbers of COVID-19 cases and 
deaths. Conversely, districts in the northern and southern regions formed clusters with 
low COVID-19 cases and deaths. These findings imply that the risk of infection was 
not independent across districts. The observed spatial autocorrelation suggests that 
the disease may spread from high-risk districts to neighbouring areas, underscoring 
the importance of coordinated efforts to control the spread of the disease across all 
districts. The findings of this study suggest that proper identification and monitoring of 
hotspots in the first wave could have enabled more effective management of COVID-
19 cases in the second wave.  

Spatial models have demonstrated their usefulness as tools for comprehending 

and examining pandemic behaviour. Nevertheless, the issue of multicollinearity often 

poses a challenge for these models. In the present study, it was observed that the 

independent variables utilized to identify risk factors exhibited a considerable degree 

of collinearity. To address this issue, PCA was initially applied, facilitated the 

identification of five components. These components are derived through linear 

combinations of the independent variables and possess no correlation with one 

another. Further these principal components served as crucial inputs for the spatial 

models which helps in deeper exploration of the relationship between the variables 

and the spatial pattern of the phenomena under investigation.  

In the existing literature, notable studies (Dutta et al., 2021; Sridhar, 2023) have 

significantly advanced our understanding of various facets related to India. However, 

it is noteworthy that these studies often fall short in their examination of district-level 

dynamics. However, these studies often lack a granular examination of district-level 

dynamics, which is crucial for capturing localized variations and tailoring interventions 

accordingly. District-level analyses are vital, particularly in a country as diverse and 

multifaceted as India, where regional variations can be substantial. Furthermore, an 

often-neglected concern in these analyses is the presence of multicollinearity, a 

statistical challenge that can compromise the accuracy of findings. Given the intricate 

interplay of factors contributing to the current situation, this study endeavours to bridge 

these gaps by incorporating a nuanced district-level analysis while simultaneously 

addressing the complexities introduced by multicollinearity. This holistic approach 

aims to provide a more robust and applicable understanding of the factors influencing 

the scenario under investigation. 

In this research, MGWR model outperformed the other implemented spatial 

models in this study. By incorporating spatially varying coefficient, MGWR captured 

the local variations and heterogeneity in the relationship between the dependent and 
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independent variables. This study identified crucial independent variables that 

strongly influence the COVID-19 cases and deaths. The findings demonstrated that 

factors such as age structure, educational level among women, housing conditions, 

climatic conditions, alcohol and tobacco consumption, number of health centres, and 

the proportion of people with health insurance were significantly associated with 

COVID-19 cases and deaths. Additionally, the findings of the MGWR model 

demonstrated a positive relationship between high temperatures and the spread of 

the COVID-19 virus. This relationship is supported by epidemiological evidence 

indicating that an increase in ambient temperature can result in a higher transmission 

rate. The virus can endure in the air longer at higher temperatures and be more easily 

transmitted through droplets. Additionally, greater access to healthcare facilities was 

positively correlated with more accurate diagnosis and reporting of COVID-19 cases, 

which may explain the higher number of cases and deaths in these areas. 

Furthermore, areas with a high proportion of the population having alcohol and 

tobacco consumption, and high literacy rates among women were also positively 

associated with higher COVID-19 case. Smoking and drinking habits can weaken the 

immune system and make individuals more susceptible to the virus. High literacy rates 

among women could increase awareness of the virus and its symptoms, increase 

testing, more accurate diagnosis and reporting of cases, and increase transmission 

opportunities. 

The MGWR model allows for the coefficients to vary spatially, capturing the spatial 

heterogeneity of the relationships between the variables. The range of coefficients 

provides valuable information about how the relationships between these variables 

change across space. The findings of the MGWR model shed light on the extent to 

which the identified risk factors explain the variation in COVID-19 cases and deaths 

across different districts. Notably, districts such as Mumbai, Chennai, Pune, Kolkata, 

Sagar, Jabalpur, Narshimpur, Raisen, Porbandar, Junagarh, and Somnath 

demonstrate a substantial proportion of variation in COVID-19 outcomes (ranging 

from 75 to 85 percent) that can be accounted for by these factors. This indicates the 

strong influence of the identified risk factors in these regions. Conversely, the 

variables considered in this study were insufficient in explaining the variation observed 

in certain districts, primarily in the northeastern region and some districts of Punjab 

(e.g., Bhatinda, Faridkot, Moga). Additionally, limited explanatory power was 

observed in regions such as Sirsa, Panchkula, and districts of Himachal Pradesh, JK, 

and Ladhak. These anomalous ranges of coefficient estimate in these regions suggest 

that other unaccounted factors may play a more significant role in shaping COVID-19 

outcomes. 

The overall findings suggest that addressing multicollinearity in spatial models can 

significantly enhance their robustness and reliability. By mitigating the impact of 

collinearity among independent variables, researchers can obtain more accurate and 

trustworthy results. Consequently, this enables the identification of high-risk districts 

where targeted interventions can be implemented. Measures such as rigorous testing 

and contact tracing, targeted lockdowns, and intensified public health messaging can 

be strategically deployed to effectively control and mitigate the spread of the virus in 

these specific areas. However, limitations of the study include its reliance on reported 

case counts and its focus on only two waves of the pandemic due to data 
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unavailability, which may not capture the full impact of the virus. Therefore, future 

research should address these shortcomings to develop more effective strategies for 

mitigating them.  

5. Conclusion 

This study aimed to employ spatial econometric modelling methods to enhance 
understanding of the spatial structures and associations among locations in India and 
to analyses the transmission patterns of COVID-19. By considering spatial proximity, 
the study assessed the impact of demographic, socioeconomic, climatic, and 
comorbidity on total COVID-19 cases and deaths across 640 districts in India. 
Additionally, this study addressed the issue of multicollinearity in spatial models 
through the utilization of principal component analysis. This approach successfully 
reduced interdependence among variables and improved the model’s accuracy, 
allowing for the identification of key risk factors associated with the phenomenon 
under investigation. The results underscore the importance of dealing with 
multicollinearity in spatial models and offer practical implications for decision-making 
and policy formulation. Notably, the study revealed that household conditions, 
educational level of women, tobacco and alcohol consumption rates, the number of 
health centers, and climatic factors were influential in COVID-19 incidence. 
Furthermore, the study identified areas with older populations as having higher 
COVID-19 cases. The findings of this study can inform the development of prevention 
strategies and strengthen public health capacities, particularly in regions where the 
healthcare system may be limited. However, it is worth noting that a limitation of the 
analysis was the lack of district-level data on deaths beyond October 2021 in India.  
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