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Abstract 

 A forecast predicts future events that have significantly impacted our society, 

especially when facing time-sensitive issues like food availability. Food was critical to 

ensuring people's welfare, especially in a country like Indonesia, which has a large 

population. Availability and access to rice are a vital need for the people of Indonesia. 

Rice is not only the primary source of carbohydrates but also has a central role in 

Indonesian society's cultural and social aspects. Forecasting can be a strategy to 

anticipate fluctuations in food demand and supply, serving as an important instrument 

for the government sand stakeholders to make effective decisions. The growing period 

of rice, which is heavily influenced by seasonality, makes DeepAR and SARIMA 

techniques an excellent solution to this problem. Both methods offered the ability to 

address features in rice production such as trends, seasonality, and anomaly effects. 

This study aimed to compare the performance of the machine learning method, 

DeepAR, and the classic forecasting method, SARIMA, in estimating seasonal data 

pattern, rice yield predictions. This study demonstrates that DeepAR, especially when 

optimized with Optuna, outperforms SARIMA in forecasting rice production in 

Indonesia, as evidenced by superior performance in key evaluation metrics such as 

root mean square error (RMSE) and mean absolute percentage error (MAPE).  
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1. Background 

A forecast is a prediction of some future event(s) (Montgomery et al., 2015), which 

has taken a significant role in our society, aiding humans in making critical 

decisions, particularly when facing time-sensitive issues like weather, temperature, 

crop yield, and food availability. Fattah et al., (2018) emphasized that forecasting is 

crucial for inventory management, which can be applied to many aspects of human 

life. Sumarsono et al., (2019) further stated that the need for food is a human right 

and one of the basic human needs. The issue of food is a key challenge faced by 

every country. The failure of a government to provide adequate food for its citizens 

can result in serious impacts, such as a slowdown in production and incidents of 

mass death as happened in the Irish famine (Forsberg, 2018). Therefore, the use of 

forecasting is required to predict days of both excess and insufficient production in 

order to design an adequate policy for maintaining food security. 

In Indonesia, rice is the staple food for the population. As a tropical crop, rice 

thrives with 1500-2000 mm of annual rainfall. According to Patria et al., (2017), 

changes in rainfall patterns and temperature increases greatly affect rice production 

because rice growth in Indonesia, mostly dominated by traditional planting methods, 

is highly dependent on the rainy season and dry season cycles. Rahim et al., (2017) 

also mentioned that rice grows within 100-115 days or about 3-4 months, which 

usually falls between October and March. The research is also supported by BPS 

data which states that rice yields peak in March. Additionally, Ohyver and 

Pudjihastuti (2018) asserted that various forecasting methods can be applied to 

address this issue.  

The autoregressive integrated moving average (ARIMA) method is recognized as 

a powerful and flexible tool for performing time series analysis and forecasting 

(Montgomery et al., 2015). However, while ARIMA is effective, natural phenomena 

often depend on past values at multiples of several lags, especially when related to 

calendar years. This necessitates modifications to ARIMA to accommodate 

seasonality, leading to the development of seasonal autoregressive integrated 

moving average (SARIMA) (Shumway et al., 2011).  

However, ARIMA cannot work well with small dataset leading to the use of neural 

network method. Hardware development makes the use of machine learning such 

as neural networks increasingly developed. Amazon research team created a 

method called DeepAR. Salinas et al., (2020) stated that DeepAR has several 

advantages over classic forecasting methods, one of which is its ability to learn from 

several similar time series, allowing it to provide accurate estimates even from very 

small datasets. 

This study aims to compare the performance of the machine learning method, 

DeepAR, and the classic forecasting method, SARIMA, in predicting rice yield. 

Given the seasonal nature of the data, opting for the regular ARIMA is avoided, as 

SARIMA is better suited for handling seasonal patterns. 

 
2. Methodology 
2.1 Data 

The data used in this study is monthly rice production in Indonesia from January 
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2018 to December 2022. Rice production is calculated based on the product of the 

harvested area and field productivity. The data is obtained from the book “Luas 

Panen dan Produksi Beras” 2018-2022, available for download on the website 

https://www.bps.go.id/ 

2.2 Rice Growth  

Food security stands as a paramount concern in Indonesia. In 2020, the Ministry of 

Agriculture devised a strategic approach aimed at augmenting production capacity 

and fortifying the rice reserves of the nation. The productivity of rice, a staple crop in 

Indonesia, has exhibited a tendency toward stagnation, experiencing a modest 

annual increase of 0.24%, whereas the expansion in cultivated paddy fields has 

seen a more substantial decrease rate of -0.71% annually (Be, 2022).  

Preserving community food security mandates, the establishment of a 

comprehensive national food reserve—a repository of food stocks strategically 

distributed across Indonesia. This reservoir serves the dual purpose of meeting 

consumption needs and addressing challenges related to food scarcity, supply 

disruptions, and price volatility.  

Rice, being a pivotal food crop extensively cultivated by Indonesian farmers, holds 

a primary status in the dietary habits of Indonesians. The cultivation cycle of rice 

spans approximately 100-115 days, translating to a duration of 3-4 months (Rahim et 

al., 2017). Shifts in precipitation patterns and escalating temperatures have a 

profound impact on rice production, with the temporal cycle of rice plants 

lengthening in direct correlation to elevated altitudes and temperatures. 

Furthermore, whether grown in rain-fed or irrigated paddy fields, rice yields are 

anticipated to decline in tandem with rising temperatures (Patria et al., 2017).  

2.3 SARIMA 
2.3.1. General Theory and Equation 

Some events or data sometimes have seasonal patterns such as crop yield which is 

very dependent on cycle of rainfall and temperature (Bang et al., 2019) or sales 

volume of agricultural products due to demand on some specific season (Yoo and 

Oh, 2020). Seasonal autoregressive integrated moving average (SARIMA) can be a 

solution in such cases. According to Cryer and Chan (2008), the SARIMA model is 

denoted by ARIMA( , , )x( , , )S. The SARIMA model can also be written as 

 (1) 

where, 

, , and  : non-seasonal order AR, differencing, MA 

, , and  : seasonal order AR, differencing, MA 

  : data in period  

  : residual in period  

B   : backward shift 

  : Seasonal Order 

 

2.3.2. Augmented Dicky-Fuller 

https://www.bps.go.id/
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A time series is said to be stationary if its properties are not affected by a change in 
the time origin (Montgomery et al., 2015). Augmented Dickey-Fuller Test is used to 
test whether the series has a unit root. If the series does not have a unit root then the 
series is stationary (Halim and Bisono, 2008). If non-stationarity is suspected, 
differencing should be considered (Montgomery et al. 2015). Hypothesis for ADF Test 
are as follow: 
H0 : The Data is not stationary 
H1 : The Data is stationary 

The formula to compute ADF test statistics is 

 
(2) 

 

where is the standard error of the least squares estimate of . If the calculated 

 is greater than or the p-value is smaller than the significant level , then 

reject H0. 
 
2.3.3. BocCox test 

Stationarity serves as a pivotal concept, comprising two essential facets: stationarity 
in mean and stationarity in variance. Stationarity in mean entails the constancy of the 
mean value of a time series over time, indicating a consistent average behavior. 
Conversely, stationarity in variance reflects the stability of the variability or dispersion 
of data points around the mean. BoxCox transformation was used to handle the non-
stationarity in variance. The Box-Cox transformation emerges as a powerful 
technique to tackle this challenge by stabilizing the variance of a dataset through a 
power transformation. Mathematically, the transformation is defined by Box and Cox 
(1964) as follow:  

 

(3) 

 
where  denotes series,  denotes transformation parameter that must be in  

interval. 
 
2.3.4. Autocorrelation Function 

The autocorrelation function (ACF) a statistical method used to identify the presence 
of correlation between a time series and its own lagged values. Autocorrelation 
measures how a series is correlated with its own past values at different time lags. 
The autocorrelation function is commonly denoted by where  is the 

autoregressive coefficient of lag  with  = 0,1,2,…, . The formula for the sample 

autocorrelation at lag k is given by: 

 
(4) 

 
where n denotes amount of data and  denotes is the value of the time series at 

time. 
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2.3.5. Partial Autocorrelation Function 

Partial autocorrelation function (PACF) is used in time series analysis to measure the 
correlation between observations of a time series that are separated by a specified 
number of time steps, while controlling for the values of the observations at 
intermediate lags. PACF is a function to that behaves like ACF of MA models, but for 
AR models (Shumway et al., 2011). 

 

(5) 

2.3.6. Akaike’s Information Criterion (AIC) 

Akaike’s information criterion was the first model selection criterion to gain 
widespread attention in the statistical community, and continues to be one of the 
most widely known and used model selection tools in statistical practice. 
(Cavanaugh, 2019). The formula of AIC as stated by Akaike itself (1974): 
 

 (6) 

 
where  denotes the number of independent parameters that are fitted for the model 

being assessed.  
However, a correction term intended to adjust the bias for a small sample size 

needs to be added. The AIC corrected for a small sample size needs to be added. 
The AIC corrected for small sample bias (AICC) is defined by (Sugiura, 1978) as:  

 

 
(7) 

 
where,  is the sample size, and k an AIC are defined above 

AICC is more generally used in place of AIC. Lower AICC (or AIC) value indicates a 
better trade-off between goodness of fit and model complexity. Consequently, the 
model with the lowest AICC (or AIC) was selected among competing models. 

2.4 DeepAR 
2.4.1. General Theory and Equation 

DeepAR is a supervised forecasting technique for forecasting scalar time series 

using recurrent neural networks (RNN) (Salinas et al., 2020). The fundamental 

difference between classical forecasting techniques such as ARIMA and ETS with 

DeepAR is that classical techniques apply one model to each individual time series. 

On the other hand, DeepAR has the ability to combine several similar time series to 

create a model that can be used for many time series cases. Study conducted by 

Salinas et al., (2020) stated that DeepAR outperforms the ARIMA and exponential 

smoothing (ETS) methods. Additionally, DeepAR can generate forecasts for time 

series similar to those it was trained on, although this particular study only utilized 

one time series and no covariates. 

 

The value of time series  at time  is denoted by . With given past data 
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 (8) 

the conditional distribution 

) (9) 

of the future of each time series 

 (10) 

here  denotes the time point from which we assume that  is unknown at 

prediction time. We assume that the model distribution 

 (11) 

consist of a product of likelihood factors 

=  (12) 

parameterized by the output  of an autoregressive recurrent network 

 (13) 

where h is a function implemented by a multi-layer recurrent neural network with 

LSTM cells parametrized by Θ. The network output into a function , 

which then builds the parameters of the fixed distribution . 

    

Figure 1: Summary of DeepAR Model (Salinas et al., 2020). 

 

The model is autoregressive, which means that it uses the observation at the last 

step as an input, and is also recurrent, i.e., the previous output is fed back as 

an input  at the next step. 

 

2.4.2. Model Training 

Salinas et al., (2020) elaborated that during the training, the parameter  of the 

model consists of the parameters of the RNN  and the parameter of . They 

can be learned by maximizing the log-likelihood. 
 

 

Since  is a deterministic function of the input, all quantities needed to compute (14) 

are observed, so it can be optimized directly via stochastic gradient descent.  

 

(14) 
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Salinas et al., (2020) also emphasized that a network with parameters  has three 

inputs: the covariates , the target value of the previous time step , and the 

network output of the previous time step . The network output 

 (15) 

is then used to calculate the parameters 

 (16) 

of the likelihood , which is used to train the model parameters. For prediction, 

the history of the time series  is fed into the network for  , then a sample is 

drawn in the prediction domain for   and fed back for the next point until the end 

of the prediction range  . Repeating this prediction process results in 

multiple traces that represent the joint predicted distribution.  
 
2.4.3. Hyperparameter in DeepAR 

Hyperparameters are parameters whose values control the learning process and 

determine the values of model parameters that a learning algorithm ends up 

learning. There are several hyperparameter in DeepAR, such as layers, cells, cell 

type, dropout rate, epoch, batch size, workers, learning rate. Five parameters were 

chosen for this research.  

Learning rate is a parameter in an optimization algorithm that controls the 

adjustment of weights with respect to the loss gradient (Khanam and Foo, 2021). A 

learning rate that is too low will result in slower convergence to the minimum loss, 

while a learning rate that is too high can cause the algorithm to overshoot and miss 

the optimal solution. 

The number of layers (Num layers) refers to the count of hidden layers in a neural 

network. Data enters through the input layer, passes through the hidden layers for 

processing, and finally exits through the output layer. The data must propagate 

through the specified number of layers (Choudhary and Kesswani, 2020). The 

number of workers (Num workers denotes the number of parallel processes 

employed during training. Increasing the number of workers can enhance 

parallelization and improve training efficiency (Giuseppe et al., 2019). 

An epoch represents how many times a dataset is used for training. Specifically, 

one epoch means the entire dataset is passed through the model once. Different 

datasets may require varying numbers of epochs for optimal training (Siami-Namini 

et al., 2018). The batch size is the number of data samples used in each iteration 

during an epoch to train the network. Setting this hyperparameter too high can 

lengthen the training process and slow convergence, while setting it too low can lead 

to oscillations without achieving satisfactory performance (Kendel and Castelli, 

2020). 

 

2.4.4. Integrating Optuna Hyperparameter Optimization with DeepAR 

Optuna uses the define-by-run principle, allowing users to dynamically construct the 

search space within the optimization framework. Unlike the define-and-run principle, 

which restricts the manipulation of intermediate variables once the network is 
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defined, define-by-run does not require separate phases for network construction 

and computation. This flexibility enables more adaptive and efficient optimization. 

The cost-effectiveness of a hyperparameter optimization framework hinges on two 

key factors: the efficiency of parameter selection, determining which parameters to 

investigate, and the performance estimation strategy, which evaluates the value of 

currently investigated parameters based on learning curves and determines 

parameters to discard (Akiba et al., 2019). 

Optuna incorporates both types of sampling methods: relational sampling, which 

utilizes correlations among parameters, and independent sampling, which handles 

each parameter separately. Independent sampling methods like tree-structured 

Parzen estimator (TPE) and relational sampling methods such as covariance matrix 

adaptation evolution strategy (CMA-ES) are integrated within Optuna. 

For performance estimation, Optuna employs a pruning algorithm that operates in 

two phases. Firstly, it periodically monitors intermediate objective values and 

terminates trials that fail to meet predefined conditions. Secondly, Optuna utilizes a 

variant of the asynchronous successive halving algorithm (ASHA), which enables 

aggressive early stopping based on the provisional ranking of trials. The combination 

of efficient searching and pruning algorithms solidifies Optuna as the primary option 

to address hyperparameter tuning within the context of the DeepAR method. 

2.5 Evaluation Metrics 
2.5.1. Root Mean Square Error (RMSE) 

Root mean squared error is a common statistical metric to measure model 

performance in many academic studies and to measure how well the forecasted 

values compared to the observed values. RMSE penalizes variance as it gives 

errors with larger absolute values more weight than errors with smaller absolute 

values. (Chai and Draxler 2014). It is defined as the square root of the mean of all 

squared errors, or the standard deviation of forecasting error. The formula of RMSE 

as stated by Chai and Draxler (2014) is  

 

(17) 

where  denotes the differences between actual and forecasted value and n 

denotes the amount of observation data. Lower RMSE values indicate better 
forecasting accuracy. 
 
2.5.2. Mean Absolute Percentage Error (MAPE) 

Mean absolute percentage error is the average absolute error between the 

forecasted value and the actual value. It is commonly used metric to evaluate the 

accuracy of forecasting or prediction model, due to its advantages of scale-

independency and interpretability (Kim and Kim, 2016). The formula of MAPE as 

stated by Kim and Kim (2016) is 
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(18) 

where  and  denote the actual and forecast values at data point  and  is the 

number of data points. The best model is the one that has the smallest MAPE value. 

 
2.6 Data Analysis Procedure 

The stages of the analysis carried out in the study are as follows:  
1. Data Exploration: Initial exploration of rice production data is performed by 

visualizing it through line chart representations. 
2. Data Partitioning: The data is divided into training data spanning 2018-2021 

and test data for the year 2022. 
3. SARIMA Modelling: 

a) Seasonal Determination: The seasonality parameter (s) is established 
based on the seasonal patterns present in the data. 

b) Stationarity Testing: Stationarity tests for the mean and variance are 
conducted utilizing the Augmented Dickey Fuller (ADF) test and the 
Box-Cox test, respectively. 

c) Data Transformation: If the data does not adhere to the stationarity 
assumption, appropriate transformations are applied to achieve 
stationarity. 

d) Order Identification: Optimal  and  orders for the SARIMA model are 

determined through analysis of the Autocorrelation Function (ACF). 
e) Extended Identification: Further identification is performed using the 

extended sample ACF (EACF) plot, aiming to select potential orders ( , 

). This plot may sometimes yield two potential orders. 

f) Model Selection: The optimal SARIMA model is selected based on the 
Akaike information criterion (AIC) and the corrected Akaike information 
criterion (AICC) ensuring the best balance between model complexity 
and goodness-of-fit. 

4. DeepAR Modelling: 
a) The dataset is formatted into JSON, incorporating monthly seasonal 

patterns to facilitate the DeepAR model's analysis. 
b) Hyperparameter Tuning: The Optuna library, an automatic 

hyperparameter tuning framework, is utilized to optimize model 
parameters. This includes tuning the learning rate from 0.001 to 0.1, 
adjusting the number of layers from 1 to 5, varying the number of 
workers from 2 to 5, setting batch sizes between 4 and 48, and aiming 
to minimize both root mean square error (RMSE) and mean absolute 
percentage error (MAPE). 

c) Model Selection: The superior model is selected based on MAPE and 
RMSE evaluation metrics. 

5. Intrepreting the result: MAPE and RMSE metrics between SARIMA and 
DeepAR models were compared. The performance of the DeepAR model is 
compared against the SARIMA model using the MAPE and RMSE metrics. 
This comparison provides a clear evaluation of the model’s effectiveness in 
predicting the given dataset. 



104  Zahid et al. 
 

6. Result Interpretation: The findings from the performance comparison were 
interpreted to draw meaningful conclusions and insights. The results were 
analyzed to understand the strengths and limitations of each model. 

 
3. Result and Discussion  
3.1 Data Exploration 

The data utilized in this study pertain to monthly rice production, extracted from the 
BPS Book titled "Luas Panen dan Produksi Beras" spanning the years 2018 to 2022, 
encompassing the period from January 2018 to December 2022, thus comprising 60 
observations.  

Due to the customary and climatic considerations, farmers commence rice field 
cultivation at the beginning of the rainfall season, occurring between October and 
March. Consequently, March emerges as the month with the most rice production in 
Indonesia. 

 

 
Figure 2: Monthly Rice Production in Indonesia 2018-2022 (Ton). 

The data shows annual cycle, culminating in March with a production peaked at 
approximately 5,000,000 tonnes and experiencing a dip in December and January, 
where it hovers around 1,000,000 tonnes. This recurring pattern supports the 
designation of March-April as "Panen Raya," a term signifying a bountiful harvest 
celebration.  

 
Figure 3: Monthly Rice Production in Indonesia by Year. 

Given the discerned annual cycle within the data, it becomes clear to use 
forecasting methods capable of accommodating seasonal patterns to predict the data 
trend. Consequently, the DeepAR and SARIMA models have been selected for 
comparison in Indonesia’s rice production data. The dataset will be partitioned into 
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four years for training and one year for testing. The division of time periods for 
analysis is flexible, as long as it aligns with the natural yearly cycle of rice cultivation. 
Notably, the absence of missing values or outlier data makes it unnecessary for data 
imputation in this research. 

 
3.2 DeepAR 

DeepAR, available in the GluonTS library, can be executed using either Torch or 
MXNet. However, the gluon-ts.torch module lacks a set_seed() function, resulting in 
varying outputs with each execution. Consequently, using GluonTS with MXNet is 
preferable for achieving consistent results. To stabilize the outputs, set.seed(7) was 
applied, although this seed can be adjusted as needed to meet specific 
requirements. The parameters used for DeepAR include num_layers, num_workers, 
batch_size, learning_rate, and epochs. 

Table 1: Top 10 DeepAR’s Hyperparameter with Lowest MAPE. 

No 
Num 
Layer 

Num  
worker 

Learning  
Rate 

Batch  
Size 

MAPE RMSE Epoch 

1 4 4 0,002792057 28 4,50% 148820,6 50 

2 3 3 0,029528025 34 4,82% 160537,2 50 

3 1 3 0,022186597 13 4,99% 192501,4 50 

4 2 5 0,016816644 4 5,22% 223456,3 25 

5 4 4 0,022424286 6 5,34% 170569,9 50 

6 1 5 0,009838659 4 5,41% 160258,3 50 

7 2 4 0,010793208 22 5,79% 187500,6 25 

8 2 4 0,046643941 13 6,06% 199495,9 25 

9 4 2 0,006743020 47 6,12% 185457,4 50 

10 5 4 0,021991919 5 6,14% 181860,6 25 

 
Hyperparameter tuning methods like grid search, random search, and bayesian 

optimization offer different approaches to finding optimal hyperparameters for 
machine learning models. Optuna, the library employed here, stands out by 
employing Bayesian optimization algorithms, including tree-structured Parzen 
estimator (TPE) and Gaussian process-based optimization. Optuna streamlines the 
hyperparameter tuning process by automating the exploration of the hyperparameter 
space, ultimately enabling researchers and practitioners to efficiently find the most 
effective configurations for their models. 

 
3.3 SARIMA 
In determining the autoregressive (AR) and moving average (MA) parameters in 
seasonal autoregressive integrated moving average (SARIMA) models using R, there 
are two primary methods. SARIMA models are crucial for analyzing and forecasting 
seasonal data as they account for both non-seasonal and seasonal components, 
making them highly relevant for time series data exhibiting regular patterns. 

The first method involves several preparatory steps, beginning with the 
assessment of stationarity through the augmented Dickey-Fuller (ADF) test and the 
Box-Cox test. Stationarity is a critical assumption in ARIMA and SARIMA models 
because non-stationary data can lead to unreliable results (Montgomery et al., 2015). 
If the data do not exhibit stationarity, a root transformation is applied to achieve 
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stationarity. In this instance, transforming the data with the power of 0.6 resulted in 
the data meeting the stationarity assumption.  

Once the data pass the stationarity test, the next step is to determine the non-
seasonal AR, Integration (I), and MA parameters. This is achieved using the 
autocorrelation function (ACF) and extended autocorrelation function (EACF) in R.  
 

 
 

Figure 4: Plot ACF and PACF of Non-Seasonal AR and MA. 

 

 
 

Figure 5: EACF Plot of Non-Seasonal AR and MA. 

 

Based on Figure 4 and Figure 5, the ACF, PACF, and EACF revealed that the 
tentative models ARIMA(0,0,1), ARIMA(2,0,0), ARIMA(2,0,1), and ARIMA(0,0,3) were 
selected for further analysis. Figure 4 also shows a pattern of non-stationarity at lags 
12, 24, 36, and 48, indicating a seasonal component. Therefore, seasonal 
differencing was needed to address the non-stationarity issue. 
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Figure 6: ACF and PACF Plot of Seasonal AR and MA. 

 
Utilizing the ACF and PACF, the model selected for the seasonal component was 

ARIMA(0,1,0)12. The next step involves evaluating the best model using the AIC and 
the corrected Akaike information criterion ( ). Through this evaluation, the two 

best models identified were ARIMA(0,0,1)(0,1,1)12 and ARIMA(2,0,1)(0,1,0)12. 
The second method employs the auto.arima function from the "forecast" library in 

R to automatically determine the best parameters for ARIMA and SARIMA models. 
The automatic method offers the advantage of reducing the complexity and 
subjectivity involved in manual model selection. The result of this function indicated 
that the optimal model was ARIMA(0,0,1)(0,1,1)12. After identifying potential model 
using ACF, PACF, EACF, and auto.arima() function, overfitting were used to find the 
best model. 
 

Table 2: Overfitting Model Candidates for SARIMA. 

Model AIC AICC 

ARIMA(2,0,0)(0,1,1)12 1061,35 1062,64 

ARIMA(2,0,1)(0,1,1)12 1063,12 1065,12 

ARIMA(0,0,3)(0,1,1)12 1063,62 1065,62 

 
Utilizing AIC and , the model selected for model comparison and selection 

were ARIMA(2,0,0)(0,1,1)12, ARIMA(2,0,1)(0,1,1)12, ARIMA(0,0,3)(0,1,1)12.  

 
3.4 Models Comparison and Selection 

In this research, two metrics used to evaluate model performance are root mean 
square error (RMSE) and mean absolute percentage error (MAPE). MAPE 
measures the accuracy of the forecast as a percentage, providing an easy-to-
understand error rate, while RMSE gives an absolute measure of the forecast error 
magnitude, which is useful for understanding the variability in the errors. Both 
metrics were obtained by comparing the forecasted data from the selected models to 
the actual data. 

Table 3: ARIMA Models with The Lowest MAPE. 

Model MAPE RMSE 

ARIMA(0,0,3)(0,1,1)12 5,44% 346894,7 

ARIMA(0,0,1)(1,1,0)12 5,88% 346939,5 
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ARIMA(2,0,0)(0,1,1)12 6,09% 351995,7 

 
Table 4: DeepAR Models with The Lowest MAPE. 

Num 

Layer 

Num 

worker 
Learning Rate 

Batch 

Size 
MAPE RMSE epoch 

4 4 0,002792057 28 4,50% 148820,6 50 

3 3 0,029528025 34 4,82% 160537,2 50 

1 3 0,022186597 13 4,99% 192501,4 50 

 
All models exhibit acceptable MAPE values, being below 10%. However, the 

DeepAR models demonstrate superior performance in forecasting rice production in 
Indonesia, outperforming the SARIMA (ARIMA(0,0,3)(0,1,0)12) models in both RMSE 
and MAPE metrics. This suggests that the DeepAR model, with its ability to capture 
complex temporal dependencies, is more effective for this type of forecasting task. 

The superior performance of DeepAR could be attributed to its deep learning 
architecture, which allows it to model intricate patterns and seasonal effects more 
effectively than traditional statistical models like SARIMA. This is particularly 
important in the context of rice production in Indonesia, where factors such as 
"panen raya" (harvest season) introduce significant variability into the data.  

Previous studies have also highlighted the challenges in forecasting agricultural 
production due to seasonal variations, weather conditions, and other external factors 
(Divisekara et al., 2020) using SARIMA. Incorporating these insights, our study 
confirms that advanced neural network models like DeepAR can provide more 
accurate and reliable forecasts compared to traditional methods. 

Below are graphical comparison between the actual data, the forecasted data 
from the SARIMA models, and the forecasted data from the DeepAR models, 
illustrating the superior accuracy of the DeepAR forecasts. 
 

 
Figure 7: Comparison of Actual Data with Forecast of SARIMA and Forecast of       

DeepAR. 
 

Upon closer examination, The DeepAR Forecast demonstrated superior 
predictive performance for the April and August better than SARIMA. This enhanced 
accuracy during these critical months contributes to the overall superior 
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performance, both in RMSE and MAPE, of the best DeepAR model over the best 
SARIMA model. 

 

 

Figure 8: Comparison of Data Test with Forecast of SARIMA and Forecast of 
DeepAR. 

 
March and April are peak months of production due to the planting season 

starting at the beginning of the rainy season, as shown in Figure 8. During these 
months, the optimal growing conditions provided by the abundant rainfall lead to 
higher yields. The practical implications of these findings are significant for 
stakeholders in the agriculture sector. Accurate forecasts can help policymakers 
plan and manage rice supply effectively, ensuring food security during these high-
yield periods. Additionally, supply chain managers can optimize logistics, reduce 
waste, and plan storage more efficiently to handle the increased production 
volumes.  Future research could further refine these models by incorporating 
additional variables and exploring other machine learning approaches to continue 
improving forecasting accuracy.  
 
4. Conclusion and Advice 

The monthly rice production consistently exhibits an annual cyclic pattern 

attributable to its susceptibility to climatic variations. Notably, March and April are 

acknowledged as the “Panen Raya” months within this cyclic pattern. Due to the 

observed seasonality, the rice production dataset is suitable for analysis using 

seasonal autoregressive integrated moving average (SARIMA) and DeepAR models. 

Employing mean absolute percentage error (MAPE) and root mean squared error 

(RMSE) as evaluation metrics, it is deduced that DeepAR (num_layer = 4, 

num_worker = 4, learning_rate = 0,002792057, batch_size = 28, epoch = 50) 

surpasses ARIMA(0,0,3)(0,1,1)12 in the context of rice production forecasting. 

Specifically, DeepAR achieves a MAPE of 4.5% and an RMSE of 148820,62 

whereas SARIMA yields a MAPE of 5,44% and an RMSE of 346894,47. 

The DeepAR model used in this study is implemented through the GluonTS 

package. However, it is noteworthy that Amazon has introduced an enhanced 

method of this model known as DeepAR+ within the platform. It is regrettable that 

access to requires financial assistment, as it is a subscription-based service. For 

prospective research endeavors, it is advisable to consider employing DeepAR+ if 
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the financial resources are available. The advanced features and optimizations 

incorporated into DeepAR+ within the environment could potentially yield superior 

results. 

Furthermore, it is necessary to highlight a technical constraint pertaining to the 

Mxnet package, which is essential for the execution of DeepAR. Regrettably, the 

current version of Mxnet does not offer support for GPU acceleration, thereby 

limiting the potential for faster computational runtime. Mxnet also have not been 

updated since Python 3.9.x. This limitation should be taken into consideration when 

contemplating the computational efficiency of the DeepAR model in the context of 

this study. 

Another important consideration is the necessity to specify the number of data 

points to be forecasted from the outset when using MXNet, as it is not possible to 

save the model state. This limitation is compounded by the use of the Optuna 

framework for hyperparameter optimization, in which you cant even save the exact 

learning rate values. Therefore, it is crucial to define the forecast horizon at the 

beginning of the modeling process, as adjustments cannot be made post analysis.  
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