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Abstract 

The Wilcoxon Signed-Rank Test (WSRT) is a nonparametric statistical method 
based on ranks to test two paired samples. Researchers often use a frequentist 
approach in testing by utilizing test statistics or p-values. This approach has limitations 
in providing information about the rejection of the alternative or null hypothesis. These 
limitations have spurred interest in Bayesian-based testing, known as the Bayes Factor. 
The advantage of the Bayesian approach is that it can measure how much the data 
support one hypothesis over another. However, there is a problem with using the 
Bayesian approach in WSRT, since there is no distribution of the rank, implying that no 
likelihood can be formed from the data rank. Van Doorn proposed a Bayesian approach 
for this test by using a latent normal approach, modelling the data rank as coming from 
latent variables that are normally distributed. The objective of this study is to test 
whether there is a difference between the farmer exchange rate in 2021 and 2022 in 
Indonesia. We used the Wilcoxon Signed Rank Test with a Bayesian approach, as 
described by Van Doorn. The test employs the Bayes factor to conclude by transforming 
the rank of the data using a latent variable that assumes a normal distribution. The 
analysis was conducted by constructing a posterior population of difference (𝛿) of 
475,000 using the Gibbs Sampling algorithm. The values of the Bayes Factor (𝐵𝐹10) is 
of 3076.07 and concluded that there is a difference in the farmer exchange rate in 
Indonesia between 2021 and 2022. This Bayes Factor indicates extreme evidence of a 
significant difference in the farmer exchange rate in Indonesia between 2021 and 2022. 

Keywords: Bayes Factor Evidence, Bayesian Wilcoxon Test, Farmer’s Exchange 

Rate, Gibbs Sampling Algorithm, Latent Normal Model 
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1. Introduction 

The Wilcoxon Signed-Rank test is a nonparametric, rank-based method used to 
test the difference between two paired sample means. Researchers often use the 
classical (frequentist) approach, which uses statistical tests or p-values to test 
hypotheses. However, the frequentist p-value approach has the disadvantage of 
providing little information regarding the degree of truth. This has given rise to 
renewed interest in Bayesian-based testing known as the Bayes Factor (van Doorn 
et al., 2020). The advantage of the Bayesian approach is that it can measure how far 
the data supports one hypothesis compared to another hypothesis (Dienes, 2014).  

According to Van Doorn et al., (2020), the main challenge in developing Bayesian 
hypothesis tests for ranking data is the lack of a likelihood function, due to the fact 
that rankings has no uniform distances among ranks and cannot be expressed in a 
commonly known distribution. This difficulty can be overcome by modeling ranking 
data through latent variables with a normal distribution. By using a latent normal 
approach, the distribution problem of rankings can be addressed through latent 
variables, thus obtaining the likelihood function for the data and implementing a 
Bayesian approach (van Doorn et al., 2020). 

Farmer Exchange Rate (NTP, Nilai Tukar Petani) is a measure tool for calculating 
the purchasing power of agricultural products with consumer goods and services for 
both household needs and production process costs (Kementerian Pertanian, 2015). 
According to the Central Statistics Agency (BPS), the Farmer's Exchange Rate (FER) 
in Indonesia increased by 2.57% in 2022 compared to 2021, with the 2021 FER 
reaching 104.64 and the 2022 FER reaching 107.33. The distribution of FER across 
Indonesia's provinces is shown in Figure 1. 

 
Figure 1: Indonesian Farmer Exchange Rate 2021-2022 by Province 

 Based on Figure 1, there are fluctuations in the farmer's exchange rate in each 

province, indicating that there are differences in the farmer's exchange rate in 

Indonesia in 2021 and 2022. However, those differences do not necessarily indicate 

a statistically significant difference, hence it needs further statistical testing. In this 

study, the Bayesian approach will be applied to the Wilcoxon Signed-Rank Test as 

proposed by van Doorn et al. (2020), to determine whether there are significant 

differences in the farmer's exchange rate in Indonesia between 2021 and 2022. 

Although this approach has been developed in methodological studies, to date it has 

not been widely applied to the analysis of sectoral data such as the Farmer's 

Exchange Rate, specifically in the Indonesian context. Therefore, this study aims to 

fill this gap and provide a more informative alternative approach in hypothesis testing 

on ranking data. 
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2. Methodology 
2.1 Materials and Data 

The study employed a Bayesian approach using the Wilcoxon Signed-Rank Test. The 

data used were secondary data sourced from the Indonesian Central Bureau of 

Statistics. The data used in this study were farmer exchange rates in Indonesia for 

2021 and 2022, covering 34 provinces. The 2021 FER is the X variable, and the 2022 

FER is the Y variable.  

2.2 Research Methods 

Two Samples Pair Test Based on Bayes Approach 

Bayes Factor is a measure used in Bayesian statistics to describe the strength of 
evidence from one hypothesis to another. The Bayes Factor of hypothesis one to the 
null hypothesis, 𝐵𝐹10, measures how likely the observed data is under the alternative 

hypothesis (𝐻1) compared to the null hypothesis (𝐻0) (Kelter, 2020). In the case of the 
Wilcoxon Signed-Rank Test with parameter 𝛿, Van Doorn et al., (2020) used the Bayes 
Factor based on the Savage-Dickey ratio, where the form of is as follows: 

𝐵𝐹10 =
𝑃(𝛿 = 𝛿0|𝐻1)

𝑃(𝛿 = 𝛿0|𝑋, 𝐻1)
 (1) 

where 𝑃(𝛿 = 𝛿0|𝐻1) is the density function of the prior distribution at 𝛿 = 𝛿0 under 

𝐻1 dan 𝑃(𝛿 = 𝛿0|𝑋, 𝐻1) is the density function of the posterior distribution at 𝛿 = 𝛿0 

under 𝐻1. The test criteria are to reject 𝐻0 if 𝐵𝐹10 > 1 and accept 𝐻0 if 𝐵𝐹10 < 1. The 

strength of the rejection or acceptance of 𝐻0 can be seen in Figure 2. 

 

Figure 2Classification Diagram of Bayes Factor Interpretation (𝐵𝐹10)  

Source: (Quintana & Williams, 2018) 

Framework of Development of the Posterior Distribution 

In testing the case of two paired samples, van Doorn et al., (2020) used the following 
framework. Suppose there are n data pairs (𝑋1, 𝑋2, … , 𝑋𝑛) and (𝑌1, 𝑌2, … , 𝑌𝑛). In the 
frequentist approach, the research hypothesis in the Wilcoxon Signed-Rank Test is as 
follows: 

• 𝐻0: 𝑀𝑒𝑑𝑖𝑎𝑛(𝐷) = 𝛿  

• 𝐻1: 𝑀𝑒𝑑𝑖𝑎𝑛(𝐷) ≠ 𝛿  
where 𝑀𝑒𝑑𝑖𝑎𝑛(𝐷) = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑌).   
Data used in the Wilcoxon Signed-Rank Test is the difference between 𝑋𝑖 and 𝑌𝑖 

notated 𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖, and |𝑑𝑖| is ranked as 𝑟𝑖
𝑑. In Bayesian analysis, the ranking 𝑟𝑖

𝑑 
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cannot be used due to the constraint of the unavailability of a likelihood function for 
ranked data, but this can be overcome by using a latent normal approach. The main 
objective of this framework is to construct a population of posterior distributions that 
will be used in the calculation of Bayes Factor. van Doorn et al., (2020) used that 
framework to develop posterior distributions is based on the concept that observed 
rankings come from latent variable data that cannot be observed directly. By using 
latent variables, the test hypothesis can be formulated as follows: 

• 𝐻0: 𝜇𝑄𝐷 = 𝛿  

• 𝐻1: 𝜇𝑄𝐷 ≠ 𝛿 

where 𝜇𝑄𝐷 = 𝜇𝑄𝑋 − 𝜇𝑄𝑌. 𝑄𝐷 is a latent random variable that generates a rank variable 

and 𝛿 is the difference in the mean values of the latent variables X and Y. It should be 

noted that 𝜇𝑄𝑋 dan 𝜇𝑄𝑌 do not actually exist. The method proposed by van Doorn et 

al., (2020) is simulation-based, that is the process of constructing a posterior 
distribution is carried out by generating latent variable. This generation must be 
consistent in accordance with the original data rank. To ensure this consistency, the 
data generated must be within the appropriate interval. This can be done by using a 

truncated normal distribution, 𝑄𝑖
𝑑 ∼ 𝑁

(𝑎𝑖
𝑑,𝑏𝑖

𝑑)
(|𝛿|,1). The variance in the latent normal 

distribution is set at 1 because the data used in this test uses ranks rather than original 
data, where there is no information about the variance of the ranked data. Figure 3 
shows the relationship between the rank data, the latent variable, and its interval limits. 

 

 
Figure 3: Area of −∞ < 𝑞𝑑 < ∞ and 𝑟𝑑 = {1,2,3, … 𝑚} 

 

The lower and upper thresholds for the latent value 𝑞𝑖
𝑑 are defined as follows, 

respectively (van Doorn et al., 2020):    

𝑎𝑖
𝑑 = max

𝑗;𝑟𝑗
𝑑<𝑟𝑖

𝑑
(𝑞𝑗

𝑑) (2) 

𝑏𝑖
𝑑 = min

𝑗;𝑟𝑗
𝑑>𝑟𝑖

𝑑
(𝑞𝑗

𝑑) (3) 

where 𝑎𝑖
𝑑 is the lower bound of normal laten 𝑞𝑖

𝑑 for the 𝑖-th rank, and 𝑏𝑖
𝑑 is the upper 

bound of normal laten 𝑞𝑖
𝑑 for the 𝑖-th rank. 

Gibbs Sampling Algorithm of van Doorn’s 

Markov Chain Monte Carlo (MCMC) is a statistical method used to generate random 
samples from complex distributions. Gibbs sampling is a type of MCMC algorithm that 
is applied when the joint probability distribution of the parameters is unknown, but the 
conditional distribution of each variable is known. (Walsh, 2004). Van Doorn et al., 
(2020) assumed the variance of 𝛿 distributed as inverse gamma (𝛼, 𝛽), where 𝛼 = 1 
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dan 𝛽 =
𝛿2+𝛾2

2
. For the prior of 𝛿, Van Doorn et al., (2020) used Cauchy distribution with 

parameter 𝛾. The Gibbs sampling algorithm steps to construct the posterior distribution 

population of 𝛿 are as follows. 

a. For each 𝑖 in (1, … , 𝑛), generate sample 𝑄𝑖
𝑑 from truncated normal distribution 

with lower and upper limit given by 𝑎𝑖
𝑑 and  𝑏𝑖

𝑑 respectively, as in (2) and (3). 

(𝑄𝑖
𝑑|𝑞𝑖′

𝑑 , 𝛿, 𝑟𝑖
𝑑)~𝑁

(𝑎𝑖
𝑑,𝑏𝑖

𝑑)
(|𝛿|,1) (4) 

b. Generate 𝛿: 

(𝛿|𝑞𝑑 , 𝑔)~𝑁(𝜇𝛿 , 𝜎𝛿
2) (5) 

where  

𝜇𝛿 =
𝑔𝑛𝑞𝑑̅̅ ̅

𝑔𝑛 + 1
   ;      𝑞𝑑̅̅ ̅ =

1

𝑛
∑ 𝑞𝑖

𝑑

𝑛

𝑖=1

 (6) 

𝜎𝛿
2 =

𝑔

𝑔𝑛 + 1
 (7) 

c. Generate 𝑔  

(𝑔|𝛿)~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (1,
𝛿2 + 𝛾2

2
) (8) 

where 𝛾 is the scale parameter Cauchy prior distribution for 𝛿. 

The above steps are repeated until the posterior population 𝛿 is formed. The number 

of repetitions typically used is more than 100,000. 

Convergence Evaluation 

One of the requirements in Markov Chain Monte Carlo (MCMC) is that the Markov 
chain must reach convergence. One method is the Gelman-Rubin statistic (Gamerman 
& Lopes, 2006). MCMC is said to converge or be stationary if the Markov chain is no 
longer influenced by its initial value. The variance between chains (B) and the variance 
within chains (W) are calculated as follows. 

𝐵 =
𝑁

𝑀 − 1
∑(

𝑀

𝑚

𝜃̅𝑚 − 𝜃̿)2 (9) 

𝑊 =
1

𝑀(𝑁 − 1)
∑ ∑(𝜃𝑚

𝑗
− 𝜃̅𝑚)2

𝑁

𝑗=1

𝑀

𝑚

 (10) 

where N is the population size of each chain and M is the number of chains. The 
Gelman-Rubin statistics are defined as follows. 

𝑅 =
√(1 −

1
𝑁) 𝑊 + (

1
𝑁) 𝐵

𝑊
 

(11) 

The R value is usually always greater than 1. If 𝑁 →  ∞ then 𝑅 → 1, the closer R 

to 1 is better. According Gamerman & Lopes (2006), 𝑅 < 1.2 is acceptable. 

Farmer's Exchange Rate 

The Farmer's Exchange Rate (FER) is a measurement tool for calculating the 
purchasing power of agricultural products for consumer goods and services, both for 
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household needs and production costs (Kementerian Pertanian, 2015). The Farmer's 
Exchange Rate is used as an indicator to determine the level of farmer welfare in a 
given year compared to a base year. The higher FER, the more prosperous the farmer 
is. 

 
3. Results and Discussion  

3.1 Data Description 

The first step is to calculate the difference value (𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖) which is presented 
in Table 1. 

Table 1: The Different Data 

No. 𝑋 𝑌 𝐷 

1 101.20 107.46 -6.26 

2 119.06 121.73 -2.67 

⋮ ⋮ ⋮ ⋮ 

33 100.86 100.62 0.24 

34 102.19 100.12 2.07 

The next step is to describe the data. The results of the descriptive statistical 
calculations for the two variables and their differences are presented in Table 2. 

Table 2: Descriptive Statistics 

Variable Average Variance 
Maximum Minimum 

Max. Value Province Min. Value Province 

𝑋 108.02 141.07 138.72 Riau 92.84 Bali 

𝑌 110.34 173.14 144.19 Riau 95.41 NTT 

𝐷 -2.32 9.04 4.32 
Kalimantan 

Barat 
-12.66 

Sulawesi 
Barat 

Based on the table above, the average farmer exchange rate (FER) in Indonesia 
in 2021 was 108.02. Riau Province had the highest FER at 138.72, while Bali Province 
had the lowest at 92.84. In 2022, the average FER in Indonesia was 110.34. Riau 
Province again had the highest FER at 144.19, while East Nusa Tenggara (NTT) 
Province had the lowest at 95.41. The average FER data difference in Indonesia was 
-2.32. West Kalimantan Province had the highest FER difference at 4.32, while West 
Sulawesi Province had the lowest at -12.66. The high variance value indicates high 
diversity in FER data, with values reaching 141.07 in 2021, 173.14 in 2022, and 9.04 
in the difference. The histograms of the two variables and their differences are 
presented in Figure 4-6. 

 
Figure 4: Histogram of 𝑿 

 
Figure 5: Histogram of 𝒀 
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Figure 6: Histogram of 𝑫 

Based on the three figures above, the 2021 FER data in Figure 4 ranges from 90 
to 140, with the highest range value being 100 to 105 and a frequency of 11. In Figure 
5, the 2022 FER data ranges from 95 to 145, with the highest range value being 100 
to 105 and a frequency of 11. The distribution of FER in 2022 is slightly shifted to the 
right compared to 2021, indicating an increasing trend in FER. In Figure 6, the 
difference in FER data ranges from -14 to 6, with the highest range value being -4 to -
2 and a frequency of 12. Considering that the difference is calculated as the 2021 FER 
minus the 2022 FER, the negative value in the difference indicates that most FERs 
experienced an increase of 2 to 4 points, although there were some areas that 
experienced a decrease. Overall, the trend indicates an increase in FER. 

3.2 Normality Test 

The normality test was conducted using the Shapiro-Wilk test to determine whether 
the data were normally distributed or not. The data to be tested for normality was the 
data difference (d) in Table 1 with the following hypothesis formulation: 

• 𝐻0 : Data normally distributed 

• 𝐻1 : Data not normally distributed  

The test results the test statistic 𝑇3 is 0.9196 and the p-value is 0.0157. Since the 
p-value < 0.05, 𝐻0 is rejected. Thus, it can be concluded that the data is not normally 
distributed at a significant level of 5% 

3.3 Developing Posterior Distribution of 𝜹 

The hypothesis formulation of the Bayesian-based Wilcoxon Signed-Rank Test is as 
follows: 

• 𝐻0: 𝜇𝑄𝐷 = 𝛿 (There is no significant difference between the farmer's exchange 

rate in 2021 and 2022) 

• 𝐻1: 𝜇𝑄𝐷 ≠ 𝛿 (There is a significant difference between the farmer's exchange 

rates in 2021 and 2022) 
The first step is to determine the rank of the absolute difference between each of 

the 34 observational data presented in Table 3. 

Table 3: Ranking of Data Differences 

No. 𝑑𝑖 Sign |𝑑𝑖| 𝑟𝑖
𝑑 

1 -6,26 − 6,26 32 

2 -2,67 − 2,67 20 

⋮ ⋮ ⋮ ⋮ ⋮ 

33 0,24 + 0,24 3 

34 2,07 + 2,07 15 



188  Meiland & Suliadi. 
 

After getting 𝑟𝑖
𝑑, the next step is to determine the initial value 𝛿 = 0  and 𝑔 =

𝑞𝑑̅̅ ̅̅ 2

𝜎𝛿
2 +

1, with 𝜎𝛿
2 = 1. Then determine the initial latent value 𝑞𝑖′

𝑑 which is a random number 

generated from the normal distribution 𝑄𝑖′
𝑑~𝑁(0,1)  of 𝑛 = 34. After that, these values 

are converted into absolute values and sorted from smallest to largest. The results of 

the initial latent value 𝑞𝑖′
𝑑 in the first iteration are presented in Table 4. 

Table 4: Sorted Nilai 𝑸𝒊′
𝒅 ~𝑵(𝟎, 𝟏) Values in the First Iteration  

Random Absolut value 𝑞𝑖′
𝑑  ordered rank 

-0.1066 0.1066 0.0814 1 

1.6144 1.6144 0,1066 2 

⋮ ⋮ ⋮ ⋮ 

0.6854 0.6854 2.3579 33 

0.6027 0.6027 2.4838 34 

 

The results of the table above will be adjusted to the value of 𝑟𝑑. At 𝑖 = 1, the 

value of 𝑟1
𝑑 = 32, then find the value of sorted 𝑞𝑖′

𝑑 at rank 32, that is 2.3406, so that 

the value of 𝑞1′
𝑑 = 2.3406 is obtained. The value of 𝑞𝑖′

𝑑 in the first iteration is presented 

in Table 5. 

Table 5: Values of 𝑟𝑖
𝑑 and 𝑞𝑖′

𝑑 at the First Iteration 

𝑖 𝑟𝑖
𝑑 𝑞𝑖′

𝑑 

1 32 2.3406 

2 20 0.7028 

⋮ ⋮ ⋮ 

33 3 0.1087 

34 15 0.6027 

 

After obtaining the value of 𝑞𝑖′
𝑑, the lower and upper threshold values can be found 

using equations (2) and (3). The upper and lower threshold values for the value of 𝑞𝑖
𝑑 

in the first iteration are presented in Table 6. It should be noted that if the value of 

𝑎𝑖
𝑑 = −∞, it is set to 0, because basically the rank cannot have a negative value. 

The next step is to generate 34 samples of 𝑞𝑖
𝑑 from the truncated normal 

distribution (𝑄𝑖
𝑑|𝑞𝑖′

𝑑 , 𝛿, 𝑟𝑖
𝑑)~𝑁

(𝑎𝑖
𝑑,𝑏𝑖

𝑑)
(|𝛿|,1) according to the respective values of 𝑎𝑖

𝑑 and 

𝑏𝑖
𝑑. First, find the cumulative distribution function (CDF) value of each lower limit (𝑝1 =

𝑃(𝑍 ≤ 𝑎𝑖
𝑑))  and upper limit (𝑝2 = 𝑃(𝑍 ≤ 𝑏𝑖

𝑑)). Then, generate one sample 

𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑝1, 𝑝2) which is converted into a quantile value or Z score. The value is 
given a difference sign obtained from Table 3, if 𝑑𝑖=0 then it is given a random (+/-) 

sign. The truncated 𝑑𝑖 = 0 value in the first iteration is presented in Table 7. 
 

Table 6: Values of 𝑎𝑖
𝑑 and 𝑏𝑖

𝑑 at the First Iteration 

𝑖 𝑎𝑖
𝑑 𝑏𝑖

𝑑 

1 2.2575 2.3579 

2 0.6854 0.7651 

⋮ ⋮ ⋮ 

33 0.1066 0.1303 

34 0.5467 0.6081 
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Table 7: Values of Trancuted 𝑞𝑖
𝑑 at the First Iteration 

𝑖 𝑝1 𝑝2 𝑢 𝑍 𝑞𝑖
𝑑 

1 0.9880 0.9908 0.9893 2.3006 -2.3006 

2 0.7535 0.7779 0.7586 0.7018 -0.7018 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

33 0.5424 0.5518 0.5517 0.1301 0.1301 

34 0.7077 0.7284 0.7147 0.5672 0.5672 

After obtaining 𝑞𝑖
𝑑, the next step is to generate a sample of the posterior distribution 

𝛿. First, generate one sample (𝛿|𝑞𝑑 , 𝑔)~𝑁(𝜇𝛿 , 𝜎𝛿
2), where 𝜇𝛿 =

𝑔𝑛𝑞𝑑̅̅ ̅̅

𝑔𝑛+1
 and 𝜎𝛿

2 =
𝑔

𝑔𝑛+1
. 

Next, generate one sample (𝑔|𝛿)~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (1,
𝛿2+𝛾2

2
) with the 𝛿 value obtained 

from the previous generation and 𝛾 of 
1

√2
. The result of the g sample is used to generate 

the next 𝛿 sample. This process is iterated 10 times so that the 𝛿 value at the 10th 
iteration is used as the first 𝛿 sample, which is -0.8159. 

After obtaining the first sample 𝛿, 100,000 iterations were performed. The 

iterations began with calculating the values of 𝑎𝑖
𝑑 and 𝑏𝑖

𝑑. In the first iteration, the sorted 

and adjusted 𝑄𝑖′
𝑑~𝑁(0,1)  values were used, as shown in Table 5. The second iteration 

used the 𝑞𝑖′
𝑑  values obtained in the first iteration, as shown in Table 7. Subsequent 

iterations (the third to the 100,000th iteration) used the 𝑞𝑖′
𝑑 values from the previous 

iteration. The results of these iterations yielded a population of 𝛿1, 𝛿2, 𝛿3, … , 𝛿100.000 
with values (-0.8159;-0.6747;-1.0772;…;-1.1322). 

The above steps were carried out five times to obtain five sets or chains of the 𝛿 
population which are visualized in Figure 7. The construction of these five Markov 
chains was intended to carry out the Gelman-Rubin test. Based on Figure 7, the 𝛿 
value is in the range of -2 to 0. Next, a burn-in process is carried out visually based on 
Figure 7. This process is carried out to eliminate the influence of the initial value. The 
burn-in process is carried out for 5,000 samples in each chain because at the 5000th 

iteration it appears to be stable. Thus, five sets of 𝛿 populations are obtained, {𝛿𝑚
𝑗

},

𝑚 = 1, 2, 3, 4, 5;  𝑗 = 1, 2, … , 95000. 

  

  

 
Figure 7: Plot of 𝜹 for Five Chains 
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3.4 Evaluation of Convergence 

The obtained population 𝛿 will be tested for convergence using the Gelman-Rubin 
statistic. Based on the analysis results with N=95,000 and M=5, the following values 
were obtained: 

Table 8: The Values of 𝛿 

𝛿1̅ −0,9463 

𝛿2̅ −0,9641 

𝛿3̅ −0,9490 

𝛿4̅ −0,9586 

𝛿5̅ −0,9671 

𝛿̿ −0,9570 

The within and between chain variability are as follows. 

𝐵 =
𝑁

𝑀 − 1
∑(

𝑀

𝑚

𝛿𝑚̅ − 𝛿̿)2 

𝐵 =
95.000

5 − 1
[(−0,9463 − (−0,9570))2 + ⋯ + (−0,9671) − (−0,9570))2] = 7,8808 

𝑊 =
1

𝑀(𝑁 − 1)
∑ ∑(𝛿𝑚

𝑗
− 𝛿𝑚̅)2

𝑁

𝑗=1

𝑀

𝑚

 

𝑊 =
1

5(95.000 − 1)
[(−1,0732−(−0,9463))2 + ⋯ + (−0,9438−(−0,9671))2] = 0,0487 

The Gelman-Rubin statistics are 

𝑅 =
√(1 −

1
𝑁) 𝑊 + (

1
𝑁) 𝐵

𝑊
 

𝑅 = √(1 −
1

95.000
) 0,0487 + (

1
95.000

) 7,8808

0,0487
= 1,0008 

Since the 𝑅 = 1.0008 < 1.2, the Markov chain of population 𝛿 has converged. 
Since it has converged, the five sets of population 𝛿 are combined into 475,000 

(𝛿1, 𝛿2, … , 𝛿475.000)  and the Bayes Factor calculation can be performed. The 

visualization of the posterior population histogram 𝛿 is presented in Figure 8. 
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Figure 8: Histogram of Posterior 𝜹 

Based on Figure 8, the histogram is symmetrical and resembles a normal 

distribution, indicating that the population is normally distributed. The 𝛿 value tends to 

center around -1, indicating that the data difference tends to be around -1. Because 

this distribution is symmetrical, the mean, median, and mode of this data difference are 

likely to be at the center of the distribution, around -1. Considering that the 𝛿 difference 

is the latent value of the 2021 FER minus the latent value of the 2022 FER, this means 

that the average or most simulation results indicate that the 2022 FER increased by 

approximately 1 point compared to the 2021 FER. 

3.5 The Values of Bayes Factor 

The Bayes Factor calculation in this test uses the Savage-Dickey ratio. The prior 

distribution 𝛿 is the Cauchy distribution with parameter 𝛾 =
1

√2
.. Based on the analysis, 

it is obtained that the value of the density function of the distribution 𝑓(𝛿|𝛾) at the point 

𝛿 = 0 is 0.4501582. Meanwhile, the value of the density function of the posterior 

distribution 𝑓(𝛿|𝐷𝑎𝑡𝑎) at the point 𝛿 = 0  (calculated using the R logspline package 
with the dlogspline() function) is 0.000146342. Hence 

𝐵𝐹10 =
𝑃(𝛿 = 𝛿0|𝐻1)

𝑃(𝛿 = 𝛿0|𝑋, 𝐻1)
=

𝑓(𝛿|𝛾)

𝑓(𝛿|𝐷𝑎𝑡𝑎)
 

𝐵𝐹10 =
0.4501582

0.000146342  
= 3076.07 

Since 𝐵𝐹10 = 3076,07 > 1, 𝐻0 is rejected and 𝐻1 is accepted. With such a 𝐵𝐹10 
value, it means that the data is 3076.07 times more likely to be in 𝐻1 than in 𝐻0 Based 
on the interpretation classification in Figure 1, the strength of the evidence for rejecting 
𝐻0 in the data is included in the extreme category. Therefore, it can be concluded that 

the 𝐵𝐹10 value of 3076.07 provides extreme evidence that there is a significant 
difference in the farmer's exchange rate in Indonesia in 2021 and 2022. 

Table 9: The Mean, Median, and Credible Interval 95% of Posterior 𝛿 Population 

Mean Median 
Credibel Interval 95% 

Lower Limit Upper Limir 

-0.9570 -0.9548 -1.3958 -0.5312 

From Table 9, the posterior population mean 𝛿 is -0.9570 and the median is -
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0.9548. The 95% credible interval indicates the range within which the true 𝛿 value is 

estimated to lie with a 95% confidence level. This interval is derived from the lower limit 

of the 2.5% quantile of -1.3958 and the upper limit of the 97.5% quantile of -0.5312. 

With these values, the difference in the 2021 and 2022 FER (𝛿) from the simulation 

results is estimated to be within the range [-1.3958; -0.5312] with a 95% confidence 

level. 

Based on the Bayesian Wilcoxon Signed-Rank Test, it was found that most 

farmers' exchange rates (FER) increased from 2021 to 2022. This indicates a 

statistically significant difference between the two years, supporting the alternative 

hypothesis 𝐻1. This increase in the FER indicates an improvement in farmers' 

purchasing power in 2022 compared to the previous year. This could be attributed to 

improved commodity prices, subsidy policies, or a shift towards a more efficient 

production cost structure. This finding aligns with a study by Wahyudi & Agustian 

(2025) which found an upward trend in the FER from 2020 to 2024. 

4. Conclusion and Suggestion  

This study concludes that there is a significant difference between farmers' 
exchange rates in Indonesia in 2021 and 2022. By applying a Bayesian approach to 
the Wilcoxon Signed-Rank Test, this study provides strong evidence that changes in 
farmers' exchange rates are not simply random but reflect real differences between 
years. This approach also offers an informative alternative for analyzing ranked data, 
which was previously difficult with conventional statistical methods. In the future, this 
Bayesian approach can be further developed to analyze other economic indicators in 
the agricultural sector or other sectors that use paired, ranked data. 
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