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Abstract

The Wilcoxon Signed-Rank Test (WSRT) is a nonparametric statistical method
based on ranks to test two paired samples. Researchers often use a frequentist
approach in testing by utilizing test statistics or p-values. This approach has limitations
in providing information about the rejection of the alternative or null hypothesis. These
limitations have spurred interest in Bayesian-based testing, known as the Bayes Factor.
The advantage of the Bayesian approach is that it can measure how much the data
support one hypothesis over another. However, there is a problem with using the
Bayesian approach in WSRT, since there is no distribution of the rank, implying that no
likelihood can be formed from the data rank. Van Doorn proposed a Bayesian approach
for this test by using a latent normal approach, modelling the data rank as coming from
latent variables that are normally distributed. The objective of this study is to test
whether there is a difference between the farmer exchange rate in 2021 and 2022 in
Indonesia. We used the Wilcoxon Signed Rank Test with a Bayesian approach, as
described by Van Doorn. The test employs the Bayes factor to conclude by transforming
the rank of the data using a latent variable that assumes a normal distribution. The
analysis was conducted by constructing a posterior population of difference (§) of
475,000 using the Gibbs Sampling algorithm. The values of the Bayes Factor (BFy,) is
of 3076.07 and concluded that there is a difference in the farmer exchange rate in
Indonesia between 2021 and 2022. This Bayes Factor indicates extreme evidence of a
significant difference in the farmer exchange rate in Indonesia between 2021 and 2022.
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1. Introduction

The Wilcoxon Signed-Rank test is a nonparametric, rank-based method used to
test the difference between two paired sample means. Researchers often use the
classical (frequentist) approach, which uses statistical tests or p-values to test
hypotheses. However, the frequentist p-value approach has the disadvantage of
providing little information regarding the degree of truth. This has given rise to
renewed interest in Bayesian-based testing known as the Bayes Factor (van Doorn
et al., 2020). The advantage of the Bayesian approach is that it can measure how far
the data supports one hypothesis compared to another hypothesis (Dienes, 2014).

According to Van Doorn et al., (2020), the main challenge in developing Bayesian
hypothesis tests for ranking data is the lack of a likelihood function, due to the fact
that rankings has no uniform distances among ranks and cannot be expressed in a
commonly known distribution. This difficulty can be overcome by modeling ranking
data through latent variables with a normal distribution. By using a latent normal
approach, the distribution problem of rankings can be addressed through latent
variables, thus obtaining the likelihood function for the data and implementing a
Bayesian approach (van Doorn et al., 2020).

Farmer Exchange Rate (NTP, Nilai Tukar Petani) is a measure tool for calculating
the purchasing power of agricultural products with consumer goods and services for
both household needs and production process costs (Kementerian Pertanian, 2015).
According to the Central Statistics Agency (BPS), the Farmer's Exchange Rate (FER)
in Indonesia increased by 2.57% in 2022 compared to 2021, with the 2021 FER
reaching 104.64 and the 2022 FER reaching 107.33. The distribution of FER across
Indonesia's provinces is shown in Figure 1.
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Figure 1: Indonesian Farmer Exchange Rate 2021-2022 by Province

Based on Figure 1, there are fluctuations in the farmer's exchange rate in each
province, indicating that there are differences in the farmer's exchange rate in
Indonesia in 2021 and 2022. However, those differences do not necessarily indicate
a statistically significant difference, hence it needs further statistical testing. In this
study, the Bayesian approach will be applied to the Wilcoxon Signed-Rank Test as
proposed by van Doorn et al. (2020), to determine whether there are significant
differences in the farmer's exchange rate in Indonesia between 2021 and 2022.
Although this approach has been developed in methodological studies, to date it has
not been widely applied to the analysis of sectoral data such as the Farmer's
Exchange Rate, specifically in the Indonesian context. Therefore, this study aims to
fill this gap and provide a more informative alternative approach in hypothesis testing
on ranking data.
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2. Methodology
21 Materials and Data

The study employed a Bayesian approach using the Wilcoxon Signed-Rank Test. The
data used were secondary data sourced from the Indonesian Central Bureau of
Statistics. The data used in this study were farmer exchange rates in Indonesia for
2021 and 2022, covering 34 provinces. The 2021 FER is the X variable, and the 2022
FER is the Y variable.

2.2 Research Methods

Two Samples Pair Test Based on Bayes Approach

Bayes Factor is a measure used in Bayesian statistics to describe the strength of
evidence from one hypothesis to another. The Bayes Factor of hypothesis one to the
null hypothesis, BF;,, measures how likely the observed data is under the alternative
hypothesis (H;) compared to the null hypothesis (H,) (Kelter, 2020). In the case of the
Wilcoxon Signed-Rank Test with parameter §, Van Doorn et al., (2020) used the Bayes
Factor based on the Savage-Dickey ratio, where the form of is as follows:

P(6 = 6o|Hy)
P(8 = 6o|X, Hy) (1)

where P(§ = §y|H;) is the density function of the prior distribution at § = §, under
H, dan P(6 = 6y|X, Hy) is the density function of the posterior distribution at § = §,
under H;. The test criteria are to reject H, if BF;, > 1 and accept H, if BF;, < 1. The
strength of the rejection or acceptance of H, can be seen in Figure 2.
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Figure 2Classification Diagram of Bayes Factor Interpretation (BF;,)
Source: (Quintana & Williams, 2018)

Framework of Development of the Posterior Distribution

In testing the case of two paired samples, van Doorn et al., (2020) used the following
framework. Suppose there are n data pairs (X;,X,,...,X,) and (¥, Y,,...,Y,,). In the
frequentist approach, the research hypothesis in the Wilcoxon Signed-Rank Test is as
follows:

® Hy:Median(D) =6

® H,:Median(D) # 6

where Median(D) = Median(X) — Median(Y).

Data used in the Wilcoxon Signed-Rank Test is the difference between X; and Y;
notated d; = x; — y;, and |d;| is ranked as r. In Bayesian analysis, the ranking r
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cannot be used due to the constraint of the unavailability of a likelihood function for
ranked data, but this can be overcome by using a latent normal approach. The main
objective of this framework is to construct a population of posterior distributions that
will be used in the calculation of Bayes Factor. van Doorn et al., (2020) used that
framework to develop posterior distributions is based on the concept that observed
rankings come from latent variable data that cannot be observed directly. By using
latent variables, the test hypothesis can be formulated as follows:

 Hpipgp =6

e Hytpugp #6
where u,p = pox — pyr. QP is a latent random variable that generates a rank variable

and ¢ is the difference in the mean values of the latent variables X and Y. It should be
noted that p,x dan p,r do not actually exist. The method proposed by van Doorn et

al., (2020) is simulation-based, that is the process of constructing a posterior
distribution is carried out by generating latent variable. This generation must be
consistent in accordance with the original data rank. To ensure this consistency, the
data generated must be within the appropriate interval. This can be done by using a
truncated normal distribution, Q7 ~ N(a?'b?)(|6|,1). The variance in the latent normal

distribution is set at 1 because the data used in this test uses ranks rather than original
data, where there is no information about the variance of the ranked data. Figure 3
shows the relationship between the rank data, the latent variable, and its interval limits.
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Figure 3: Area of —o0 < g% < 0 and r? = {1,2,3,...m}

The lower and upper thresholds for the latent value g% are defined as follows,
respectively (van Doorn et al., 2020):

d _ d

a; = ]_;rg];gid(q]) 2)
d _ ; d

bi" = j;g}g;id(q,) (3)

J

where a? is the lower bound of normal laten gf for the i-th rank, and b is the upper
bound of normal laten gf for the i-th rank.

Gibbs Sampling Algorithm of van Doorn’s

Markov Chain Monte Carlo (MCMC) is a statistical method used to generate random
samples from complex distributions. Gibbs sampling is a type of MCMC algorithm that
is applied when the joint probability distribution of the parameters is unknown, but the
conditional distribution of each variable is known. (Walsh, 2004). Van Doorn et al.,
(2020) assumed the variance of § distributed as inverse gamma («, ), where a =1
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dan g = 62:’/2. For the prior of §, Van Doorn et al., (2020) used Cauchy distribution with

parameter y. The Gibbs sampling algorithm steps to construct the posterior distribution
population of § are as follows.
a. For each i in (1,..,n), generate sample Q¢ from truncated normal distribution
with lower and upper limit given by a? and b respectively, as in (2) and (3).

(@ffaf 8,1 ~N( 4 ) (1511) (4)
b. Generate §:
(61q% 9)~N(us, o) (5)
where
i n
_ gnq“ — I\
o= vl q —n._lqi (6)
g
2 _
% = gn+1 (7)
c. Generate g
52 + 2
(gl&)~Inverse Gamma (1, 5 4 ) (8)

where y is the scale parameter Cauchy prior distribution for §.
The above steps are repeated until the posterior population § is formed. The number
of repetitions typically used is more than 100,000.

Convergence Evaluation

One of the requirements in Markov Chain Monte Carlo (MCMC) is that the Markov
chain must reach convergence. One method is the Gelman-Rubin statistic (Gamerman
& Lopes, 2006). MCMC is said to converge or be stationary if the Markov chain is no
longer influenced by its initial value. The variance between chains (B) and the variance
within chains (W) are calculated as follows.

N ~
B =m2(9m - 0)? (9)

1 M N .
W=—M(N_1);;(9;n—em>2 (10)

where N is the population size of each chain and M is the number of chains. The
Gelman-Rubin statistics are defined as follows.

1 1

sz(l‘N)W+(N)B (11)
w

The R value is usually always greater than 1. If N - o then R — 1, the closer R

to 1 is better. According Gamerman & Lopes (2006), R < 1.2 is acceptable.

Farmer's Exchange Rate

The Farmer's Exchange Rate (FER) is a measurement tool for calculating the
purchasing power of agricultural products for consumer goods and services, both for
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household needs and production costs (Kementerian Pertanian, 2015). The Farmer's
Exchange Rate is used as an indicator to determine the level of farmer welfare in a
given year compared to a base year. The higher FER, the more prosperous the farmer
is.

3. Results and Discussion

3.1 Data Description

The first step is to calculate the difference value (d; = x; — y;) which is presented

in Table 1.
Table 1: The Different Data

No. X Y D

1 101.20 107.46 -6.26
2 119.06 121.73 -2.67
33 100.86 100.62 0.24
34 102.19 100.12 2.07

The next step is to describe the data. The results of the descriptive statistical
calculations for the two variables and their differences are presented in Table 2.

Table 2: Descriptive Statistics

Variable Average Variance Maximum , , Minimum -
Max. Value Province Min. Value Province

X 108.02  141.07 138.72 Riau 92.84 Bali
Y 110.34 173.14 144.19 Riau 95.41 NTT
D 232 904 432  Kalimantan - 455  Sulawes
Barat Barat

Based on the table above, the average farmer exchange rate (FER) in Indonesia
in 2021 was 108.02. Riau Province had the highest FER at 138.72, while Bali Province
had the lowest at 92.84. In 2022, the average FER in Indonesia was 110.34. Riau
Province again had the highest FER at 144.19, while East Nusa Tenggara (NTT)
Province had the lowest at 95.41. The average FER data difference in Indonesia was
-2.32. West Kalimantan Province had the highest FER difference at 4.32, while West
Sulawesi Province had the lowest at -12.66. The high variance value indicates high
diversity in FER data, with values reaching 141.07 in 2021, 173.14 in 2022, and 9.04
in the difference. The histograms of the two variables and their differences are
presented in Figure 4-6.

Figure 4: Histogram of X Figure 5: Histogram of Y
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[ ﬁ Il
Figure 6: Histogram of D

Based on the three figures above, the 2021 FER data in Figure 4 ranges from 90
to 140, with the highest range value being 100 to 105 and a frequency of 11. In Figure
5, the 2022 FER data ranges from 95 to 145, with the highest range value being 100
to 105 and a frequency of 11. The distribution of FER in 2022 is slightly shifted to the
right compared to 2021, indicating an increasing trend in FER. In Figure 6, the
difference in FER data ranges from -14 to 6, with the highest range value being -4 to -
2 and a frequency of 12. Considering that the difference is calculated as the 2021 FER
minus the 2022 FER, the negative value in the difference indicates that most FERs
experienced an increase of 2 to 4 points, although there were some areas that
experienced a decrease. Overall, the trend indicates an increase in FER.

3.2 Normality Test

The normality test was conducted using the Shapiro-Wilk test to determine whether
the data were normally distributed or not. The data to be tested for normality was the
data difference (d) in Table 1 with the following hypothesis formulation:

e H, : Data normally distributed

e H, : Data not normally distributed

The test results the test statistic T; is 0.9196 and the p-value is 0.0157. Since the
p-value < 0.05, H, is rejected. Thus, it can be concluded that the data is not normally
distributed at a significant level of 5%

3.3 Developing Posterior Distribution of §

The hypothesis formulation of the Bayesian-based Wilcoxon Signed-Rank Test is as
follows:
* Hy:poo = 6 (There is no significant difference between the farmer's exchange
rate in 2021 and 2022)
e Hy:uyo #6 (There is a significant difference between the farmer's exchange

rates in 2021 and 2022)
The first step is to determine the rank of the absolute difference between each of
the 34 observational data presented in Table 3.

Table 3: Ranking of Data Differences

No. d; Sign |d;] rt
1 -6,26 — 6,26 32
-2,67 — 2,67 20

33 0,24 + 0,24 3

34 2,07 + 2,07 15
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—2

After getting r?, the next step is to determine the initial value § = 0 and g = qa—z +
s

1, with a§ = 1. Then determine the initial latent value qi‘f which is a random number
generated from the normal distribution Q~N(0,1) of n = 34. After that, these values
are converted into absolute values and sorted from smallest to largest. The results of
the initial latent value g in the first iteration are presented in Table 4.

Table 4: Sorted Nilai Q2~N(0,1) Values in the First Iteration

Random Absolut value q? ordered rank
-0.1066 0.1066 0.0814 1
1.6144 1.6144 0,1066 2
0.6854 0.6854 2.3579 33
0.6027 0.6027 2.4838 34

The results of the table above will be adjusted to the value of r¢. At i =1, the
value of % = 32, then find the value of sorted qff at rank 32, that is 2.3406, so that
the value of qf, = 2.3406 is obtained. The value of g¢ in the first iteration is presented
in Table 5.

Table 5: Values of v and q¢ at the First Iteration

l rt qp

1 32 2.3406
2 20 0.7028
33 3 0.1087
34 15 0.6027

After obtaining the value of ¢, the lower and upper threshold values can be found
using equations (2) and (3). The upper and lower threshold values for the value of g
in the first iteration are presented in Table 6. It should be noted that if the value of
al = —oo, it is set to 0, because basically the rank cannot have a negative value.

The next step is to generate 34 samples of g from the truncated normal

distribution (Q¢|qf, 6, rid)~N(a¢ bd)(|6|,1) according to the respective values of a and

b2. First, find the cumulative distribution function (CDF) value of each lower limit (p; =
P(Z <af)) and upper limit (p, =P(Z <b®)). Then, generate one sample
u~Uniform(py, pz) Which is converted into a quantile value or Z score. The value is
given a difference sign obtained from Table 3, if d;=0 then it is given a random (+/-)
sign. The truncated d; = 0 value in the first iteration is presented in Table 7.

Table 6: Values of a? and b{ at the First lteration

i a? b

1 2.2575 2.3579
2 0.6854 0.7651
33 0.1066 0.1303

34 0.5467 0.6081
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Table 7: Values of Trancuted q¢ at the First Iteration

i 2 P u Z qf

1 0.9880 0.9908 0.9893 2.3006 ~2.3006
2 0.7535 0.7779 0.7586 0.7018 -0.7018
33 0.5424 0.5518 0.5517 0.1301 0.1301
34 0.7077 0.7284 0.7147 0.5672 0.5672

After obtaining q¢, the next step is to generate a sample of the posterior distribution
gnq_d g
gn+1 gn+1’

8. First, generate one sample (8|q% g)~N(us, 05 ), where us = and of =

Next, generate one sample (g|d)~Inverse Gamma (1, 52-2|-y2) with the é value obtained

from the previous generation and y of%. The result of the g sample is used to generate

the next § sample. This process is iterated 10 times so that the § value at the 10th
iteration is used as the first § sample, which is -0.8159.

After obtaining the first sample &, 100,000 iterations were performed. The
iterations began with calculating the values of aé* and b¥. In the first iteration, the sorted
and adjusted Q#~N(0,1) values were used, as shown in Table 5. The second iteration
used the qﬁ values obtained in the first iteration, as shown in Table 7. Subsequent

iterations (the third to the 100,000th iteration) used the g values from the previous
iteration. The results of these iterations yielded a population of §1,52,63, ..., 5100000
with values (-0.8159;-0.6747;-1.0772;...;-1.1322).

The above steps were carried out five times to obtain five sets or chains of the §
population which are visualized in Figure 7. The construction of these five Markov
chains was intended to carry out the Gelman-Rubin test. Based on Figure 7, the §
value is in the range of -2 to 0. Next, a burn-in process is carried out visually based on
Figure 7. This process is carried out to eliminate the influence of the initial value. The
burn-in process is carried out for 5,000 samples in each chain because at the 5000th

iteration it appears to be stable. Thus, five sets of § populations are obtained, {5},
m=1,2,3,4,5;j=1,2,..,95000.

Figure 7: Plot of § for Five Chains
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34 Evaluation of Convergence

The obtained population § will be tested for convergence using the Gelman-Rubin
statistic. Based on the analysis results with N=95,000 and M=5, the following values
were obtained:

Table 8: The Values of 6§

5 —0,9463
5, —0,9641
55 —0,9490
54 —0,9586
5 —0,9671
5 —0,9570

The within and between chain variability are as follows.

M
B——N 25—52
= —=12,(0m =9
m

95.000
B = 1 [(=0,9463 — (—0,9570))2 + --- + (=0,9671) — (—0,9570))?] = 7,8808

1 M N ' B
W= =y 2 2, O

[(—1,0732—(—0,9463)) + -+ (—0,9438—(—0,9671))?] = 0,0487

W =zsG5000- 1)
The Gelman-Rubin statistics are

(=R G

w

R

R

(1 - #) 0,0487 + ( _1 )7,8808
j 95.000 e 95.000 — 10008

Since the R = 1.0008 < 1.2, the Markov chain of population § has converged.
Since it has converged, the five sets of population § are combined into 475,000
(61,62,...,6475000y  and the Bayes Factor calculation can be performed. The
visualization of the posterior population histogram § is presented in Figure 8.
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Figure 8: Histogram of Posterior

Based on Figure 8, the histogram is symmetrical and resembles a normal
distribution, indicating that the population is normally distributed. The § value tends to
center around -1, indicating that the data difference tends to be around -1. Because
this distribution is symmetrical, the mean, median, and mode of this data difference are
likely to be at the center of the distribution, around -1. Considering that the § difference
is the latent value of the 2021 FER minus the latent value of the 2022 FER, this means
that the average or most simulation results indicate that the 2022 FER increased by
approximately 1 point compared to the 2021 FER.

3.5 The Values of Bayes Factor

The Bayes Factor calculation in this test uses the Savage-Dickey ratio. The prior
distribution § is the Cauchy distribution with parameter y = % Based on the analysis,

it is obtained that the value of the density function of the distribution f(§|y) at the point
6 =0 is 0.4501582. Meanwhile, the value of the density function of the posterior
distribution f(8|Data) at the point § = 0 (calculated using the R logspline package
with the dlogspline() function) is 0.000146342. Hence

P8 =6IH) _ f(lv)
P(6 = 80|X,H;)  f(5|Data)

BF. — 0.4501582
1070000146342

BF10 =

= 3076.07

Since BF,;, = 3076,07 > 1, H, is rejected and H, is accepted. With such a BF;,
value, it means that the data is 3076.07 times more likely to be in H, than in H, Based
on the interpretation classification in Figure 1, the strength of the evidence for rejecting
H, in the data is included in the extreme category. Therefore, it can be concluded that
the BF,, value of 3076.07 provides extreme evidence that there is a significant
difference in the farmer's exchange rate in Indonesia in 2021 and 2022.

Table 9: The Mean, Median, and Credible Interval 95% of Posterior § Population

. Credibel Interval 95%
Mean Median — .
Lower Limit Upper Limir
-0.9570 -0.9548 -1.3958 -0.5312

From Table 9, the posterior population mean § is -0.9570 and the median is -
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0.9548. The 95% credible interval indicates the range within which the true § value is
estimated to lie with a 95% confidence level. This interval is derived from the lower limit
of the 2.5% quantile of -1.3958 and the upper limit of the 97.5% quantile of -0.5312.
With these values, the difference in the 2021 and 2022 FER (&) from the simulation
results is estimated to be within the range [-1.3958; -0.5312] with a 95% confidence
level.

Based on the Bayesian Wilcoxon Signed-Rank Test, it was found that most
farmers' exchange rates (FER) increased from 2021 to 2022. This indicates a
statistically significant difference between the two years, supporting the alternative
hypothesis H;. This increase in the FER indicates an improvement in farmers'
purchasing power in 2022 compared to the previous year. This could be attributed to
improved commodity prices, subsidy policies, or a shift towards a more efficient
production cost structure. This finding aligns with a study by Wahyudi & Agustian
(2025) which found an upward trend in the FER from 2020 to 2024.

4. Conclusion and Suggestion

This study concludes that there is a significant difference between farmers'
exchange rates in Indonesia in 2021 and 2022. By applying a Bayesian approach to
the Wilcoxon Signed-Rank Test, this study provides strong evidence that changes in
farmers' exchange rates are not simply random but reflect real differences between
years. This approach also offers an informative alternative for analyzing ranked data,
which was previously difficult with conventional statistical methods. In the future, this
Bayesian approach can be further developed to analyze other economic indicators in
the agricultural sector or other sectors that use paired, ranked data.
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