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Abstract 

 One of the efforts made by the government to maintain food security is to provide 

statistical data on rice production through accurate calculation of harvest areas using 

the area sampling framework approach. Although area sampling framework surveys 

produce accurate estimates, the costs required are quite high when applying this 

method. To overcome this problem, one solution that can be applied is to utilize satellite 

imagery to monitor the greenness index of plants using the enhanced vegetation index. 

However, in real conditions, the Landsat-8 optical satellite is susceptible to cloud cover, 

which results in missing data. This study aims to model the phase of rice plants using 

the regression logistic multinomial model by utilizing Landsat-8 satellites and k-nearest 

neighbors imputation handling to overcome missing data. The results showed that the 

model had varying performance in each phase, with an average balanced accuracy of 

66.45%. This figure shows that the model can classify the area sampling framework data 

imputed using the k-nearest neighbors imputation method well. The model shows 

optimal performance in the late vegetative and generative phases but is less effective in 

detecting the harvest, puso, and non-rice paddy phases. 
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1. Introduction 

Food security is a crucial global issue affecting people's welfare, economic stability, 

and national security. In Indonesia, rice is a strategic commodity that must be ensured 

in terms of availability because it serves as a staple food and the primary carbohydrate 

source, with a 93.8 kg per capita consumption rate in 2023 (BPN, 2024). The 

dominance of rice in consumption patterns makes paddy cultivation a top priority in 

maintaining food security. Therefore, effectively monitoring paddy production is 

essential to ensuring sustainable food availability and supporting national food policies. 

To maintain food security, statistical data on rice production is needed so that the 

government can make the right decisions. Since 2018, the Central Bureau of Statistics 

(BPS) and the Agency for the Assessment and Application of Technology (BPPT) have 

used the Area Sampling Framework (ASF) method to estimate the rice harvest area 

(BPS, 2018). The ASF method adopts a scientific, objective, and measurable 

approach, offering advantages over traditional methods, which often result in biased 

and inaccurate estimates (Prasetyo et al., 2020). While ASF provides more accurate 

estimates, its implementation is costly and time-consuming, particularly in remote 

areas (Ruslan, 2019). These challenges highlight the need for a faster, more cost-

effective, and accurate solution to enhance monitoring efficiency. 

To overcome these limitations, the use of remote sensing technology through 

satellite imagery has emerged as an alternative. Satellite imagery such as Landsat-8 

enables faster and more accurate monitoring in estimating the harvest area and 

identifying the growth phase of rice. Previous studies such as those conducted by 

Triscowati et al., (2019); Marsuhandi et al., (2020); Kurniawati, (2023) that combining 

satellite imagery with ASF methods and the use of various spectral indices, including 

the Enhanced Vegetation Index (EVI) can increase accuracy in monitoring the growth 

phase of rice. In addition, the use of satellite imagery at various observation periods 

provides a clearer picture of crop development, thus helping to better plan food 

production. 

The use of Machine Learning methods such as Random Forest and Boosting has 

been widely used to classify the growth phase of rice based on satellite data. Although 

effective, these methods often face constraints in terms of interpretation of results, 

making it difficult to understand the factors that specifically affect rice growth. 

Alternatively, the Regression Logistic Multinomial Model (RLM) can be used to provide 

a clearer interpretation of the parameters affecting rice growth (Kurniawati et al., 2024). 

With RLM, the most influential factors on rice growth phases can be better identified, 

making the analysis results more informative and useful for policymakers. 

While Landsat-8 satellite imagery improves the efficiency of agricultural 

monitoring, one of the main challenges is data loss due to cloud cover, especially in 

tropical regions like Indonesia. Clouds covering the Earth's surface can obscure 

satellite sensors, preventing important information on crop growth from being detected. 

Sinabutar et al., (2020) Mentioned that the more extensive the cloud cover, the greater 

the amount of information lost from satellite. The loss of data on EVI values can be 

categorized as Missing Not at Random (MNAR), because the missing data is caused 

by cloud cover that depends on unobserved information (Kurniawati et al., 2023). To 

overcome this problem, imputation methods such as K-Nearest Neighbors (KNN) are 

effective in filling in missing data by utilizing information from similar data (Umar & 
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Gray, 2023). Handling missing data is crucial to ensure accurate analysis and complete 

information (Fadlil et al., 2022). 

This research aims to examine the utilization of the Regression Logistic 

Multinomial Model (RLM) in classifying rice growth phases using Landsat-8 satellite, 

as well as applying the KNN imputation method to overcome the problem of missing 

data due to cloud cover. By utilizing EVI as the main variable, this research is expected 

to provide a more accurate and efficient solution for monitoring rice production in 

Indonesia. The results of this research are expected to support efforts to strengthen 

national food security through more precise, effective, and sustainable monitoring. 

 

2. Research Methods 

This research is categorized as applied research. Applied research focuses on the 

application of knowledge and methods to solve practical problems in the real world. In 

the context of this research, the K-Nearest Neighbors (KNN) imputation method will be 

applied to overcome the problem of missing data in the Enhanced Vegetation Index 

(EVI) spectral index generated from Landsat-8 satellite. In addition, this study will 

evaluate the use of Regression Logistic Multinomial Model (RLM) for rice growth phase 

classification, to improve accuracy and efficiency in monitoring rice production in 

Indonesia. 

The data used is secondary data obtained from an Area Sampling Frame (ASF) 

survey by the Central Bureau of Statistics in February 2024 in Padang Pariaman 

Regency. This research involved 61 sampling units and 549 observation units. In 

addition, remote sensing data from the Landsat-8 satellite will be used for three time 

periods in 2024. The results of KSA observations can be seen in Figure 1. 

 
 

Figure 1: Landsat-8 Padang Pariaman View Period January 15, 2024, 
January 31, 2024, and February 16, 2024 
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This study uses three independent variables and one dependent variable. The 

independent variable consists of the EVI spectral index from three different periods, 

namely February 16, 2024, January 31, 2024, and January 15, 2024. The dependent 

variable is the ASF observation class, which includes eight classes. Table 1 provides 

details on the variables used in this study. 

Table 1: Research Variable 

No. Variable Variable Name Description 

1 Y ASF Observation 

1 : Early Vegetative 
2 : Late Vegetative 
3 : Generative 
4 : Harvest 
5 : Land Preparation 
6 : Puso  
7 : Non-Paddy Rice Field 
8 : Not Rice Field 

2 X1 EVIt 
EVI value around survey time (t);  
t = {February 16, 2024} 

3 X2 EVIt-1 
EVI value one period before t;  
(t-1) = {January 31, 2024} 

4 X3 EVIt-2 
EVI value two periods before t;  
(t-2) = {January 15, 2024} 

Data Analysis Technique 

1. Prepare the data to be used, namely the Landsat-8 Enhanced Vegetation 

Index (EVI) spectral index data for 3 periods from January 2024 to February 

2024. 

2. Exploring data using bar charts for response variables. The use of bar charts 

is used to see the frequency of values per category of ASF observations.  

3. Preprocessing was done to check the completeness of the data by applying 

the K-Nearest Neighbors (KNN) imputation method to fill in the missing EVI 

values. This method ensures that the data used in subsequent analysis is 

complete and free from missing data problems. 

4. Divide the data into training data and testing data proportionally so that each 

segment is represented. The proportion used is 70% for training data and 

30% for testing data. 

5. Form a Regression Logistic Multinomial (RLM) model. 

6. Evaluate the model obtained in step 6 using the confusion matrix by 

calculating the accuracy, sensitivity, specificity, and balanced accuracy 

values on the testing data.  

7. Interpretation of the results obtained. 

3. Result and Discussion 

Data exploration was conducted to obtain preliminary information about the data. KSA 

observation categories that were multiclass were analyzed using bar charts. Of the 549 
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segments used in the study, more than 100 segments were dominated by the 

"Generative" class, as shown in Figure 2. In contrast, the "Puso" class was the last 

segment, because puso conditions rarely occur during the rice planting phase. The 

figure also shows that the frequency of ASF observation categories is not balanced. 

 

 
Figure 2: Frequency of ASF Observation Categories 

After conducting data exploration, the next step is to ensure the completeness of 

the data to be used in further analysis. In this study, the process of identifying missing 

data was carried out on EVI variables generated from Landsat-8 satellite. EVI data 

were taken from three time periods, namely February 16, 2024 (EVI t), January 31, 

2024 (EVIt-1), and January 15, 2024 (EVIt-2). One of the main causes of EVI data loss 

is cloud cover at the time of satellite image capture. Landsat-8 satellite images are 

often unable to penetrate thick clouds, so the surface reflectance information needed 

to calculate EVI cannot be obtained completely. As a result, there is missing data that 

needs to be addressed to ensure a more accurate analysis.  

 

 
Figure 3: Distribution of Missing Data Positions 
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The visualization in Figure 3 identifies that 36% of the data in the three observation 

periods are missing, with the missing pattern randomly distributed. In some rows, 

missing data occurs simultaneously in all periods, while in other rows it only occurs in 

one period. This suggests that the missing data is most likely MNAR in nature, caused 

by cloud cover blocking the capture of satellite. To address this issue, an imputation 

method using KNN with a value of K = 3 was applied, which successfully filled in the 

missing data and recovered the entire dataset. A comparison of the missing data 

before and after imputation can be seen in Table 2. 

Table 2: Comparison of Data Before and After Imputation 

No Period 
Number 
of Data 

Data Before Imputation Data After Imputation 

Number of 
Missing 

Data 
Percentage 

Number of 
Missing 

Data 
Percentage 

1 EVIt 549 301 54.83% 0 0% 

2 EVIt-1 549 113 20.58% 0 0% 

3 EVIt-2 549 178 32.42% 0 0% 

Amount 1647 592 35.94% 0 0% 

 

After imputation, the data was divided into training data (70%) and testing data 

(30%) for further analysis. From this division, 389 data for training and 160 data for 

testing were obtained. The training data was used to train the model, while the testing 

data was used to test the model's ability to classify the growth phase of rice effectively. 

Parameter estimates using RLM on the training data are presented in Table 3. 

Table 3: RLM Parameter Estimator 

Logit Intercept X1 X2 X3 

Early Vegetative 13.3549 -28.0619 -13.1234 -37.8288 

Late Vegetative 11.5423 -2.9223 10.7817 -74.4195 

Generative 5.2768 -20.6547 15.7196 -18.0567 

Harvest 6.1487 -23.9272 16.9682 -23.5309 

Land Preparation 11.3199 -31.2112 -13.5324 -20.2366 

Puso 2.8016 -33.6943 -6.4883 7.4386 

Non-Paddy Rice Field 5.9407 -14.3257 2.7705 -17.3771 

 

To assess the feasibility of the model obtained, a confusion matrix was used to 

calculate the classification accuracy of the testing data, which included 160 

observations. Model evaluation is done by calculating several main criteria from the 

confusion matrix, namely accuracy, sensitivity, specificity, and balanced accuracy. 

These criteria provide an overall picture of the model's performance in classifying rice 

growth phases, by measuring the extent to which the model can identify the correct 

category and distinguish between different categories. The values of the three 

confusion matrix criteria are presented in Table 4. 
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Table 4: RLM Confusion Matrix Criteria Value 

ASF 
Observation 

Criteria 

Sensitivity Specificity 
Balanced 
Accuracy 

Early Vegetative 69.23% 90.48% 79.85% 

Late Vegetative 71.64% 91.28% 81.46% 

Generative 85.71% 72.04% 78.88% 

Harvest 00.00% 99.10% 49.55% 

Land Preparation 36.17% 92.67% 64.42% 

Puso 00.00% 100.00% 50.00% 

Non-Paddy Rice 
Field 

00.00% 99.42% 49.71% 

Not Rice Field 60.00% 95.40% 77.70% 

Average 40.34% 92.55% 66.45% 

Based on Table 4, the evaluation results of the Regression Logistic Multinomial 

(RLM) model, Balanced Accuracy averaged 66.45%, indicating that the model has a 

fairly good ability to differentiate between the various rice growth phases as well as 

other categories. The vegetative phase, especially Late Vegetative and Early 

Vegetative, showed the best performance with a Balanced Accuracy of 81.46% and 

79.85% respectively, meaning that the model was able to detect the vegetative phase 

of rice with high accuracy. This result is important because the vegetative phase is one 

of the key stages in the rice growth cycle that greatly affects production yield. The 

strong performance in this phase reflects the potential of the model to be applied in 

effectively monitoring the early development of rice plants. 

However, the model faces significant challenges in detecting the Harvest and Puso 

phases, which is evident from the low Balanced Accuracy of 49.55% and 50.00%, 

respectively. This low value is mainly due to the Sensitivity reaching zero, indicating 

that the model fails to fully detect both the harvest phase and puso (crop failure) cases. 

This is a critical weakness as these phases are crucial for monitoring agricultural yields 

and crop failure-related disasters. However, the high Specificity in these two phases 

shows that the model can recognize non-harvest and non-desert cases well, but needs 

to be improved to detect actual events. Similar challenges were also seen in the Non-

Paddy Rice Field category, which only recorded a Balanced Accuracy of 49.71%, 

signaling the difficulty in distinguishing non-paddy fields from other categories. 

On the other hand, the Generative phase performed quite well with a Balanced 

Accuracy of 78.88%, although Specificity in this phase is relatively lower than the 

vegetative phase. The model's performance in detecting the generative phase, which 

is the stage where rice starts to form seeds, remains important for monitoring crop 

productivity. Meanwhile, the Not Rice Field category also showed satisfactory results 

with a Balanced Accuracy of 77.70%, indicating that the model is quite effective in 

distinguishing areas that are not rice fields. This ability to identify non-rice fields is 

relevant in the context of land management and agricultural area mapping. 
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Overall, while the RLM model performed well in the vegetative phase and in 

distinguishing non-fields, there were significant weaknesses in detecting the Harvest 

and Puso phases. The results of this evaluation suggest that data enhancement or 

enrichment in certain phases is required to improve the prediction accuracy of the 

model, especially for phases that have low Sensitivity. Improving the model's 

performance in detecting critical phases such as harvest and puso will be crucial to 

improving overall agricultural monitoring, particularly in the context of yield 

management and crop failure risk mitigation 

4. Conclusion 

This study successfully demonstrated that the Regression Logit Multinomial Model 

(RLM) coupled with the K-Nearest Neighbors (KNN) imputation method to fill in missing 

data due to cloud cover can be effectively used to classify rice growth phases using 

Landsat-8 and Enhanced Vegetation Index (EVI) satellite data. The RLM model shows 

a good capability with an average Balanced Accuracy of 66.45%, especially in 

detecting the vegetative phase, which is an important stage in the rice growth cycle. 

The Late Vegetative and Early Vegetative phases performed the best, with Balanced 

Accuracy of 81.46% and 79.85%, respectively. However, significant weaknesses 

emerged in the Harvest and Puso phases, which had low Balanced Accuracy due to 

zero Sensitivity, indicating the model was unable to accurately detect these phases. 

This is a critical weakness that needs to be corrected given the importance of these 

phases in agricultural yield monitoring. To improve the accuracy of the model, data 

enrichment is required, especially in the harvest and puso phases, which are important 

to support agricultural yield monitoring and mitigate the risk of crop failure. 

References 

BPN. (2024). Situasi Konsumsi Pangan Nasional Tahun 2023. In Badan Pangan 
Nasional. Jakarta Selatan: Badan Pangan Nasional. 

BPS. (2018). Upaya Perbaikan Data Padi Dengan Metode Kerangka Sampel Area 
(KSA) 2018. 

Fadlil, A., Herman, & Praseptian M, D. (2022). K Nearest Neighbor Imputation 
Performance on Missing Value Data Graduate User Satisfaction. Jurnal RESTI 
(Rekayasa Sistem Dan Teknologi Informasi), 6(4): 570–576. 
https://doi.org/10.29207/resti.v6i4.4173 

Kurniawati, Y. (2023). Penduga Area Kecil Berhirarki untuk Luas Panen Padi Berbasis 
Survei KSA-BPS dengan Memanfaatkan Citra Satelit LANDSAT 8. 1–130. 

Kurniawati, Y., Wijayanto, H., Kurnia, A., Dirgahayu D, D., & Susetyo, B. (2024). Rice 
phenology monitoring via ensemble classification for an extremely imbalanced 
multiclass dataset of hybrid remote sensing. Remote Sensing Applications: 
Society and Environment, 35: 101246. 
https://doi.org/10.1016/J.RSASE.2024.101246 

Kurniawati, Y., Wijayanto, H., Kurnia, A., Domiri, D. D., & Susetyo, B. (2023). Selection 



Indonesian Journal of Statistics and Its Applications. Vol 9 No 1 (2025), 1 - 9  9 

 

 
 

of Multinomial Logit Models Based on Accuracy Reclassification of the Area 
Sampling Frame Labels. Science and Technology Asia, 28(2): 18–30. 
https://doi.org/10.14456/scitechasia.2023.23 

Marsuhandi, A. H., Soleh, A. M., Wijayanto, H., & Domiri, D. D. (2020). Pemanfaatan 
Ensemble Learning Dan Penginderaan Jauh Untuk Pengklasifikasian Jenis Lahan 
Padi. Seminar Nasional Official Statistics, 2019(1): 188–195. 
https://doi.org/10.34123/semnasoffstat.v2019i1.247 

Prasetyo, O. R., Kadir, & Amalia, R. R. (2020). A pilot project of area sampling frame 
for maize statistics: Indonesia s experience. Statistical Journal of the IAOS, 36(4): 
997–1006. https://doi.org/10.3233/SJI-200743 

Ruslan, K. (2019). Improving Indonesia’s Food Statistics through the Area Sampling 
Frame Method. Center for Indonesian Policy Studies, 34. 

Sinabutar, J. J., Sasmito, B., & Sukmono, A. (2020). Studi Cloud Masking 
Menggunakan Band Quality Assessment, Function of Mask Dan Multi-Temporal 
Cloud Masking Pada Citra Landsat 8. Jurnal Geodesi Undip Agustus, 9(3): 51–
60. 

Triscowati, D. W., Sartono, B., Kurnia, A., Domiri, D. D., & Wijayanto, A. W. (2019). 
Multitemporal remote sensing data for classification of food crops plant phase 
using supervised random forest. 11311: 10. https://doi.org/10.1117/12.2547216 

Umar, N., & Gray, A. (2023). Comparing Single and Multiple Imputation Approaches 
for Missing Values in Univariate and Multivariate Water Level Data. Water 
(Switzerland), 15(8): 1–21. https://doi.org/10.3390/w15081519 

 


