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Abstract

Various prognostic models based on survival analysis methods have been

proposed to predict the risk of preeclampsia (PE). To develop a more accurate yet

interpretable prediction approach, we utilized clinical data from pregnant women

collected at a hospital in Jakarta and applied the XGBoost-Cox Proportional

Hazard Model (XGB-Cox). This model integrates the predictive power of the

XGBoost machine learning algorithm with the Cox Proportional Hazard (Cox-PH)

model, which estimates the effect of covariates on event time. Our results show

that the XGB-Cox model outperforms the traditional Cox-PH model based on four

evaluation metrics: log-likelihood, log-rank test, concordance index (C-index), and

Brier score. The XGB-Cox model achieved a higher C-index of 0.8908 compared

to 0.7548 for Cox-PH, indicating improved risk discrimination. Kaplan-Meier

curves suggest that XGB-Cox provides better separation across risk quartiles.

While XGB-Cox generally yields lower Brier Scores, its performance declines at

later gestational weeks. The Cox-PH model remains superior in interpretability,

offering clear hazard ratios, while XGB-Cox enhances model fitness and still

provides meaningful insights into feature importance. Additionally, sensitivity

analysis underscores the need to carefully determine the proportion of censored

data, as excessive censoring affects model stability. These findings suggest that

XGB-Cox provides a robust predictive framework for early PE risk assessment,

supporting its potential application in clinical decision-making for maternal

healthcare.
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1 Background

Preeclampsia (PE) poses a serious threat to the health of pregnant women and

unborn children, potentially leading to complications such as preterm birth, placental

abruption, and intrauterine growth restriction (American College of Obstetricians and

Gynecologists, 2019). It also increases the long-term risk of cardiovascular disease

for both mother and child (Sibai, 2012). Despite advances in obstetric care, PE

remains one of the leading causes of maternal and perinatal morbidity and mortality

(Roberts & Hubel, 2013). Globally, it affects approximately 2–8% of pregnancies

(American College of Obstetricians and Gynecologists, 2020), with an estimated 12%

of maternal deaths attributable to PE and its complications (World Health

Organization, 2024). In Southeast Asia, Indonesia ranks fourth in maternal mortality,

with 173 maternal deaths per 100,000 live births in 2020 (United Nation, 2023). This

rate is significantly higher than that of neighboring countries such as Brunei, Thailand,

Malaysia, and Singapore. Between 2016 and 2022, approximately 18.5% of maternal

deaths in Indonesia were caused by PE (Syairaji et al., 2024), making it one of the

most prominent contributors to maternal mortality in the country.

Identifying pregnancies at high risk of developing PE is crucial, as timely

therapeutic interventions including prophylactic aspirin use, closer monitoring, and

earlier delivery can reduce the incidence and severity of PE and its associated

complications (Wright et al., 2020). With the advancement of computational tools and

methods, various techniques have been developed to improve early detection and

management of PE. For instance, machine learning algorithms can analyze PE

datasets to identify patterns and predict the likelihood of PE with higher accuracy.

Classification algorithms such as Random Forest (RF), Linear Regression (LR),

Support Vector Machines (SVM), and Generalized Linear Models (GLM) have been

used for early PE prognosis using gene expression data (Sharma et al., 2023).

However, these approaches only predict whether a case will result in PE or not,

without estimating risk probabilities. Moreover, insights drawn from genomic data are

often difficult to interpret. Logistic regression models have also been applied to predict

PE probability and identify risk factors (Fang et al., 2024), but they lack the temporal

dimension needed to understand disease progression over time.

Survival analysis techniques have emerged as powerful approaches for PE

prediction. By leveraging time-to-event data, these methods estimate the probability

of developing PE within a specified timeframe, allowing healthcare providers to

implement timely and targeted interventions (Kleinbaum & Klein, 2012). Bayesian

competing risk models (Devana & Abdullah, 2022) offer advantages over conventional

survival models, which typically assume that women who deliver without developing

PE are censored and may still experience the condition post-gestation. In contrast,

competing risk models simultaneously account for multiple possible outcomes,

offering a more accurate picture of morbidity. Nevertheless, such models have

limitations, including their reliance on distributional assumptions (e.g., Weibull) that

may not capture real-world data complexity. Moreover, their Bayesian formulation can

be sensitive to prior selection, especially when the sample size is small (Lindley, 1957;

Naaman, 2016).

Recent studies have shown that Extreme Gradient Boosting (XGBoost)

outperforms deep learning models in classification and regression tasks involving

tabular data (Shwartz-Ziv & Armon, 2022). XGBoost not only achieves high accuracy
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but also demands significantly lower computational resources, making it a more

efficient option. This is particularly relevant given that PE-related data is often tabular

in nature. Additionally, XGBoost offers built-in feature importance metrics, providing

interpretable insights into factors contributing to PE. A hybrid approach called EXSA,

which combines XGBoost with the Cox Proportional Hazard (Cox-PH) model, has

been used to predict log-hazard ratios in breast cancer data (Liu et al., 2021). EXSA

captures nonlinear relationships without requiring prior assumptions about

time-to-event distributions or prior probabilities, offering a flexible alternative to

traditional models.

While the above methods focus on achieving the best possible model fit, selecting

the right amount of censored data presents an additional challenge. A recent study

highlights how increasing censoring can degrade prediction accuracy, making survival

estimates less reliable (Báskay et al., 2025). This underscores the need for careful

censoring strategies to maintain robust survival predictions.

This study aims to develop a predictive model for early detection of PE using the

XGB-Cox approach, which integrates the Cox-PH model with the XGBoost algorithm.

By combining the time-awareness of Cox-PH with the predictive power and

interpretability of XGBoost, this research explores whether the hybrid method can

address limitations of conventional survival analysis and support more timely and

effective clinical interventions for maternal healthcare. It also examines how different

levels of censoring affect model performance, helping to determine the optimal

balance for improved predictive accuracy.

2 Methodology

2.1 Data

The data used is secondary data from a screening of pregnant women in their first

trimester who gave birth either with or without PE at a hospital in Jakarta between

August 2019 and October 2020.

2.2 Cox Proportional Hazard

The Cox Proportional Hazards (Cox-PH) model is one of the most commonly used

methods in survival analysis. This model assumes that the hazard ratio between two

individuals remains constant over time. The formula is expressed as:

h(t,X) = h0(t)e
∑p

i=1 βiXi (1)

where h(t,X) is the hazard function at time t, h0(t) is the baseline hazard function,
X is the vector of predictor variables, and β represents the coefficients to be estimated

(Cox, 1972).

In the Cox-PHmodel, the likelihood is calculated as a partial likelihood, which avoids

specifying the baseline hazard distribution h0(t). The partial likelihood is given by:

L(β) =
∏
i∈D

e
∑p

k=1 βkxik∑
j∈R(ti)

e
∑p

k=1 βkxjk
(2)

Where:
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• D is the set of individuals who experienced the event at time ti,

• R(ti) is the risk set—individuals still at risk just before time ti,

• β are the regression coefficients of the predictor variables,

• xi represents the predictor variables for individual i.

From the partial likelihood, the log-likelihood function can be derived as follows:

logL(β) =
∑
i∈D

 p∑
k=1

βkxik − log
∑

j∈R(ti)

e
∑p

k=1 βkxjk

 (3)

In the Cox-PHmodel, the estimation of β is obtained bymaximizing the log-likelihood
function (Cox, 1972).

2.3 Extreme Gradient Boosting

XGBoost is a powerful machine learning algorithm used for both regression and

classification problems. It employs a boosting method that incrementally builds

models by optimizing an objective function, typically using Mean Squared Error (MSE)

as the loss criterion (Chen & Guestrin, 2016). The general objective function of

XGBoost is:

L =
n∑

i=1

l(yi, ŷi) +
k∑

j=1

Ω(fj) (4)

Where l is the loss function, ŷi is the prediction, and Ω(fj) is the regularization term
for the jth model to prevent overfitting (Chen & Guestrin, 2016).

XGBoost uses gradient boosting to iteratively build weak decision tree models and

refine predictions until optimal performance is achieved. At each stage, a new tree is

built to minimize the residuals of the previous tree, where the residual is the difference

between the actual value (yi) and the predicted value (ŷi).
XGBoost is widely used in regression problems due to its ability to produce

accurate models with efficient computation. In regression tasks, XGBoost typically

uses Mean Squared Error (MSE) as the objective function to minimize prediction

errors while balancing model complexity.

Data splitting in XGBoost is guided by the Gain criterion, defined as:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ (5)

Where:

• G is the gradient (first derivative of the loss function),

• H is the Hessian (second derivative of the loss function),

• λ and γ are regularization parameters to prevent overfitting (Chen & Guestrin,

2016).
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XGBoost can be adapted for survival analysis by integrating it with the Cox

Proportional Hazards (Cox-PH) model. In this context, the goal is to predict the

log-hazard ratio rather than directly predicting the target variable (time and event

status).

To implement this, the loss function in Equation (4) is replaced with the log-likelihood

function (3) of the Cox-PH model. The negative log-likelihood is then minimized, which

is equivalent to maximizing the Cox partial log-likelihood as the objective.

The splitting criterion in Equation (5) is applied with gradients G and Hessians H
derived from the Cox partial log-likelihood (2), instead of using MSE.

This approach provides greater flexibility than the conventional Cox-PH model,

which assumes a constant hazard ratio. By integrating XGBoost, the model can

capture complex nonlinear relationships among features, leading to more accurate

survival predictions (Liu et al., 2021).

2.4 Performance Metrics for Survival Models

To evaluate the performance of survival models, several common metrics are used to

compare model prediction outcomes. The following are widely used metrics along with

the formulas that underpin them.

The log-rank test is a non-parametric statistical test used to compare survival curves

between two or more groups. It evaluates the null hypothesis that there is no difference

in survival functions between the groups. The log-rank statistic is calculated using the

following formula:

χ2 =
∑ (Oi − Ei)

2

Ei

(6)

where:

• Oi is the observed number of events in group i,

• Ei is the expected number of events based on the combined survival function.

The log-rank test produces a p-value used to determine whether the difference

between groups is statistically significant (Mantel, 1966).

The concordance index (C-index) is a performance metric used to assess the

accuracy of time-to-event predictions in survival analysis (Harrell, 1982). It is defined

as:

C =

∑
i,j I(T̃i > T̃j) · I(ηj > ηi)∑

i,j I(T̃i > T̃j)
(7)

where:

• I(T̃i > T̃j) is an indicator function that equals 1 if the event time T̃i is greater than

T̃j, and 0 otherwise,

• I(ηj > ηi) is an indicator that equals 1 if the predicted risk score ηj is greater than
ηi, and 0 otherwise.
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The C-index evaluates how well the survival model ranks individuals based on

predicted risk scores. It measures the proportion of subject pairs that are correctly

ordered by the model, such that a higher predicted risk corresponds to a shorter

survival time. The C-index ranges from 0 to 1, where 0 indicates completely incorrect

predictions, 0.5 suggests performance no better than random guessing, and 1

indicates perfect prediction (Harrell, 1982).

The Brier score is a metric that quantifies the prediction error in survival data by

incorporating the cumulative probability of the predicted event. It is defined as:

BS =
1

N

N∑
i=1

(fi − oi)
2 (8)

Where:

• N is the number of observations,

• fi is the predicted probability for the i-th event,

• oi is the actual outcome (1 if the event occurred, 0 otherwise).

The Brier score measures how well the model combines predictive accuracy for

both event occurrence and censored data. Lower scores indicate better prediction

performance (Brier, 1950).

3 Result and Discussion

3.1 Data Preprocessing

The data used in this study are comprising a total of 946 observations, with 71

experiencing PE and 875 not. It includes various clinical (e.g.,

PreviousgestationalHT, DiabetesMellitusType2, UseofAspirin), demographic

(e.g., class_Age, class_BMI, AnyFamilyhistoryofPE), and biochemical (e.g.,

FinalMAP, FinalMeanUtAPI, PLGFconcentration_pgml) variables gathered during

pregnancy.

Binary predictors were converted to categorical format. Numerical predictors were

retained in their original scales to preserve clinical interpretability. All values in the

dataset were complete and no imputation was necessary.

3.2 Model Development

All analyses were conducted using the R programming language version 4.5.0. Two

models were developed: a Cox-PH model implemented using the coxph() function

from the survival package (Therneau, 2024), and a XGB-Cox with the xgb.train()
function with survival:cox objective from xgboost package (Chen et al., 2025).

To ensure balanced data for survival analysis and evaluate the impact of censoring

on model performance, a sensitivity analysis was conducted by simulating both

XGB-Cox and Cox-PH models across different levels of censored data. The

simulation ran 100 iterations for each censoring percentage, ranging from 0% to 90%,

and assessed performance through log-likelihood metrics. In each iteration, censored
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data points were randomly selected across the dataset to ensure variability. The

censoring percentage with the smallest mean log-likelihood difference between

models was chosen to optimize stability and predictive accuracy.

Hyperparameter tuning on XGB-Cox performed using random search with 1000

rounds, each evaluated through 10-fold cross-validation to prevent overfitting. Tuned

parameters include eta (learning rate), max_depth (tree depth), gamma (split threshold),

colsample_bytree (feature sampling), min_child_weight (node weight limit),

subsample (data fraction per round), lambda (L2 regularization), and alpha (L1

regularization).

3.3 Model Performance Evaluation

This study evaluates the predictive performance of the survival models using four

metrics: Log-likelihood, Log-rank, C-index, and Brier Score. Each metric provides

complementary insights into the model’s ability to discriminate risk, rank patients

appropriately, and accurately estimate event probabilities over time.

To determine the optimal balance between censored and uncensored data, a

sensitivity analysis was conducted. Results revealed that log-likelihood worsens as

the proportion of censored data increases for both models. XGB-Cox initially performs

slightly better than Cox-PH up to 55% censoring, but beyond this point, its

log-likelihood declines more rapidly, making it less stable under high censoring

conditions. This suggests that XGB-Cox is more sensitive to added censored data,

affecting its predictive reliability. The difference in mean log-likelihood between the

two models was minimized at 55% censoring, making this threshold the most

appropriate choice for fair model comparison and stability. Based on this finding, all

subsequent experiments will be conducted using randomly selected censored data at

this threshold.

Figure 1: Log-likelihood distribution of 100 times run on various censored data

percentage.

Using data subset acquired, hyperparameter tuning was performed to refine the
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XGB-Cox model for improvement. Once tuning was completed, risk stratification was

assessed by generating Kaplan-Meier (KM) curves based on quartiles of the predicted

risk scores from both Cox-PH and XGB-Cox models.

Figure 2: Kaplan-Meier Curves for Risk Quartiles for Cox-PH (left) and XGB-Cox (right).

Although the log-rank test p-values for both models were less than 0.0001,

indicating statistically significant differences for at least one risk group, the Cox-PH

model fails to clearly distinguish between the its intermediate risk quartiles, as their

KM curves overlap. In contrast, the XGB-Cox model achieves better separation

across all quartiles, suggesting improved stratification of patients by predicted risk.

To evaluate the model’s ability to rank patients by risk, the C-index was computed.

The C-index reflects the model’s capacity to assign higher risk scores to individuals

who experience the event earlier.

Table 1: C-index Comparison Between Models

Model C-index

Cox-PH 0.7547

XGB-Cox 0.8907

The results show that the XGB-Cox model outperforms the Cox-PH model in

ranking individuals by their time-to-event. A higher C-index indicates that XGB-Cox

more accurately assigns higher risk scores to patients who develop PE earlier, which

is essential for early detection.

However, while the C-index measures discriminatory ability, it does not evaluate

how well the predicted probabilities align with actual outcomes. To assess the overall

accuracy and calibration of probabilistic predictions, the Brier Score was calculated at

various gestational time points.

The selected time points correspond to quantiles of the observed event times,

focusing on later gestational stages. This choice reflects the clinical reality that PE

events tend to occur closer to delivery. Evaluating the models at these critical time

windows ensures relevance to real-world decision-making and highlights predictive

performance when accurate forecasting is most needed.

Across most time points, the XGB-Cox model yields lower Brier Scores than the

Cox-PH model, indicating better alignment between predicted risk probabilities and

actual outcomes. However, at later gestational weeks, the Brier Score for XGB-Cox

increases and surpasses that of Cox-PH, suggesting a decline in predictive accuracy

as gestational age progresses. This shift implies that while XGB-Cox performs well in

earlier predictions, its reliability diminishes in later stages.
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Table 2: Brier Score Comparison at Different Time Points

Time (Weeks of Gestation) Brier Score (Cox-PH) Brier Score (XGB-Cox)

32.71 0.9322 0.3551

35.57 0.8361 0.2407

36.57 0.7772 0.2242

37.29 0.6941 0.2308

38.00 0.6341 0.2686

38.43 0.6047 0.3091

38.86 0.5535 0.3589

39.29 0.5134 0.4253

39.86 0.5095 0.5215

3.4 Model Interpretation

The Cox-PH model provides coefficients representing the log hazard ratios for each

feature, making it highly interpretable. A positive coefficient indicates an increased risk

of PE, while a negative coefficient suggests a protective effect. The coefficients show

that variables like DiabetesMellitusType2, Conception, UseofAspirin, PreviousPE,
AnyFamilyhistoryofPE, and FinalMeanUtAPI contribute to increased PE risk, while

class_Age1, UseofantiHTdrug and ChronicHT have negative coefficients, indicating a

potential protective effect.

Figure 3: Coefficients from the Cox-PH model representing log hazard ratios of

features.

While Cox-PH excels in interpretability by providing direct hazard ratios, the

XGB-Cox model enhances predictive accuracy while still retaining some

interpretability. Feature importance in XGB-Cox is measured using gain, which

quantifies how much each feature improves the model’s predictive accuracy when

used for splitting in decision trees. The most influential features in XGB-Cox are

FinalMAP, FinalOpthalmica, and FinalMeanUtAPI, followed by

PLGFconcentration_pgml and CRL_mm. PreviousPE1 has comparatively lower

importance, indicating a smaller contribution to the model’s predictions.
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Figure 4: Feature importance in the XGB-Cox model based on gain.

3.5 Discussion

A trade-off exists between interpretability and predictive performance in survival

modeling. The Cox-PH model provides clearer insight into how individual predictors

affect the risk of PE, making it preferable when transparency is essential. In contrast,

the XGB-Cox model enhances predictive accuracy while retaining interpretability

through feature importance scores, making it an alternative for applications where

prediction takes priority.

An additional consideration is the model’s sensitivity to the level of censoring in

the data. By varying the proportion of censored observations and evaluating changes

in log-likelihood, it was observed that increased censoring generally reduced model

fit. This outcome suggests that survival models, particularly XGB-Cox may struggle to

capture event-time patterns when too much of the data is censored. Therefore, careful

attention to the degree of censoring is essential to ensure robust model development

and reliable performance evaluation.

4 Conclusion

This study compared the predictive performance and interpretability of the Cox

Proportional Hazards (Cox-PH) model and the XGBoost-based Cox model (XGB-Cox)

for early detection of PE using clinical, demographic, and biochemical data from 946

pregnant patients.

The XGB-Cox model demonstrated better performance across multiple evaluation

metrics. It achieved a higher C-index of 0.7547 compared to 0.8907 for the Cox-PH

model, indicating better discrimination in ranking patients by risk of PE. Kaplan-Meier

curves further revealed that the XGB-Cox model provided clearer stratification of risk

quartiles, with well-separated survival curves, unlike the Cox-PH model where some

risk groups overlapped.

In terms of calibration, the XGB-Cox model generally yielded lower Brier Scores at

multiple gestational time points, reflecting improved overall alignment between

predicted and actual risk probabilities. However, at later stages, its Brier Score

surpassed that of Cox-PH, suggesting a decline in predictive accuracy as gestational

age progresses.
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Interpretation of the models revealed that the Cox-PH coefficients highlight

features with positive or negative effects on hazard, making it superior in

interpretability. The most relevant predictors included DiabetesMellitusType2,
Conception, UseofAspirin, PreviousPE, class_Age, UseofantiHTdrug and

ChronicHT. Meanwhile, the XGB-Cox model enhances predictive accuracy while still

offering interpretability through feature importance scores, ranking FinalMAP,
FinalOpthalmica, and FinalMeanUtAPI as the most influential variables.

Furthermore, the study highlights the significance of carefully considering the

proportion of censored data included in survival analysis. Our sensitivity analysis

demonstrated that increasing censoring beyond 55% negatively impacts model

stability, particularly in XGB-Cox, which is more sensitive to censored observations.

This finding underscores the need for a balanced approach when selecting censored

data to ensure fair comparisons and reliable predictions.

Overall, the results suggest that while Cox-PH remains preferable for

interpretability, XGB-Cox provides a more accurate predictive approach while

retaining meaningful insights into feature importance. This balance between fitness

and interpretability highlights its potential utility in clinical decision making for maternal

care. In practice, doctors could use a prediction tool based on the XGB-Cox model,

where routinely collected data during pregnancy check-ups can be entered for an

individual patient to estimate their future risk of developing PE, helping them assess

risk progression over time and support timely interventions.
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