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Abstract

Class imbalance remains a major challenge in classification modelling that
frequently leads to biased predictive models. This study aimed to compare two ensemble
techniques based on an undersampling approach, namely Self-Paced Ensemble and
RUSBoost, for handling imbalanced classification in poverty identification in West Java.
The results suggested that RUSBoost consistently outperformed Self-Paced Ensemble
across the most critical metrics. It showed better balance in classification outcomes.
When the objective is to maximize the identification of poor households, the default
threshold in the RUSBoost model was prefered. On the other hand, if precision is
prioritized due to limited resources, the Youden Index threshold offers a better
alternative. Given the overall evaluation metrics, RUSBoost with the default threshold
was suggested as the most reliable and well-balanced option among the compared
models for classifying poor households in West Java under imbalanced data condition.
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1. Introduction

Poverty is a multidimensional problem that involves economic, social, and political
aspects. The issue is because it relates to the most basic needs in life, and it is a global
problem faced by many countries. Addressing this persistent challenge demands more
effective and efficient solutions, particularly through the application of data analytical
techniques to develop predictive and classification models. These models can utilize
empirical data to identify populations at risk of poverty. In modeling context, classifying
poverty status is challenging due to the imbalanced data problem.

Imbalance data is characterized by a disproportionate number of observations
across different response classes. The imbalance ratio (IR), which quantifies the
disparity between the majority and minority classes, can vary considerably depending
on the specific application. An IR ranging from 100:1 to 1,000:1 is considered as
extreme imbalance (Hasanin et al., 2019). In poverty data, non-poor households form
the larger group or majority class, while poor ones are the smaller group or minority
class. For instance, in West Java, Indonesia, 7,6% of household were classified as
poor in 2023 (Badan Pusat Statistik, 2023). If not handled through appropriate
techniques, it often leads to poor model performance. Such models typically exhibit a
bias towards the majority class, as their training process is predominantly influenced
by majority class, while treating minority class as noise. Consequently, the model
struggles to accurately learn the distinctive characteristics of the minority class.
Furthermore, global accuracy metrics can be misleading, as models may favor
the majority class and score high accuracy (Rahmadini & Santoso, 2025), but they may
still perform poorly on the minority class (Wang et al., 2021).

A variety of methodologies have been developed to mitigate the effects of class
imbalance in classification. In general, these methodologies are divided into three
groups (Altalhan et al., 2025). The first involves interventions at the data level, primarily
through resampling techniques designed to rebalance class distributions. This includes
oversampling, which augments the number of minority class observations, and
undersampling, which reduces the number of majority class observations. While
oversampling can be effective, it carries the risk of overfitting and often demands
substantial computational resources (Zhang et al., 2021), hence less practical for
large-scale datasets. On the other hand, while computationally lighter, undersampling
risks the loss of important information from the majority class. The second category of
approaches focuses on modifying classification algorithms to account for the
significance of the minority class during the training process. An example is cost-
sensitive learning, where different misclassification costs are assigned to each class.
However, the pre-defined cost matrix, which typically needs expert domain knowledge
for its accurate construction, is often not available (Liu et al., 2020). The final group
consists of hybrid methods designed to combine the strengths of each approach while
reducing their respective limitations. This includes combined sampling techniques,
algorithmic resampling strategies, and ensembles of resampled datasets (Altalhan et
al., 2025).

An increasingly popular and effective strategy for handling data imbalance is the
application of resampling procedures within ensemble learning algorithms. Ensemble
methods have demonstrated robust performance to handle imbalanced datac
classification. When applying ensemble models to datasets with clearly defined
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features, undersampling proved more effective than oversampling because it delivers
strong classification performance with significantly lower computational cost (Jeong et
al., 2022). This finding has spurred the development and implementation of several
ensemble techniques incorporating undersampling, eg. Balanced Random Forest
(Agusta & Adiwijaya, 2018; Fulazzaky et al., 2024), UnderBagging which combines
undersampling with bagging (Galar et al., 2012; Permatasari et al., 2016), RUSBoost
that combine undersampling and boosting (Fulazzaky et al., 2024; Galar et al., 2012;
Permatasari et al., 2016; Seiffert et al., 2010) and Self-Paced Ensemble (SPE) (Bano
et al., 2024; Chen et al., 2023; Liu et al., 2020; Ristea & lonescu, 2021).

The final two algorithms discussed utilize ensemble learning that perform
undersampling in the learning process. RUSBoost is known for its computational
efficiency, which combines random undersampling with a boosting algorithm (Seiffert
et al., 2010). SPE introduces an innovative learning mechanism that iteratively adjusts
the training process based on the classification hardness of the data that enhances
adaptability to the complex characteristics of large datasets (Liu et al., 2020).

This study compared the performance of SPE and RUSBoost in classifying the
poverty status of households in West Java. Due to class imbalance, performance
evaluation focused on more relevant metrics for this scenario rather than accuracy.
Evaluation was conducted using two threshold approaches: the default (0.5) and an
optimal threshold based on the Youden Index (Hassanzad & Hajian-Tilaki, 2024). The
better model was then chosen for further analysis, including variable importance and
partial dependence plots, to investigate the effects of features on poverty status.

2. Data and Methodology
21 Data

The data used in this study were obtained from the 2023 National Socio-Economic
Survey (Survei Sosial Ekonomi Nasional/Susenas) in West Java (Badan Pusat
Statistik, 2023b). There was a total of 25,890 households, of which 1,073 (4.14%) were
poor households unweighted, representing an imbalanced condition, as shown in
Table 1. Households are considered poor if their monthly per-capita expenditure is less
than the district/city (kabupaten/kota) poverty line.

Table 1 Proportion of Household in West Java Based on Poverty Status

Povertv Status Number of Proportion Based on Weighted Proportion
y Household Sample (Official)
Poor 1,073 4.14% 7.62 %
Non-poor 24,817 95.86% 92.38%

The response for modeling was poverty status (unweigted) while the explanatory
variables consisted of 20 categorical and six numeric variables (Table 2), including
education, financial inclusion, housing condition, basic infrastructure, health and social
ulnerability and household structure.

2.2 Data Analysis and Modeling

Data analysis and modeling in this study were performed as follows:
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o

Prepare Susenas data and poverty line data of West Java in 2023

Select relevant variables based on previous research

c. Feature engineering:

1) Define a response variable by comparing capita expenditure and poverty line
2) Regroup class for independent variables

o

Table 2 List of Variable and Its Description

Variable Description Type
Response

Y Household poverty status Categoric
Education

X1 Years of schooling of the head of household Numeric
X4 Percentage of illiterate household members Numeric
X3 Highest education level attained in the household Categoric
Xi1a Flag indicating ownership of KIP/PIP (Smart Indonesia Program card) Categoric
Economic and Financial Inclusion

X3 Percentage of bankable household members Numeric
Xs Flag indicating whether the household receives cash transfers Categoric
Xo Flag indicating BPNT (Bantuan Pangan Non-Tunai) recipient Categoric
X10 Flag indicating PKH (Program Keluarga Harapan) recipient Categoric
X1 Flag indicating KKS (Kartu Keluarga Sejahtera) ownership Categoric
X12 Flag indicating receipt of regional/local government assistance Categoric
Housing Conditions

Xis Roofing material of the house

Xi1e Wall material of the house Categoric
X7 Flooring material of the house Categoric
Xi1s Floor area (in square meters) of house Numeric
Xe Flag indicating land ownership Categoric
Basic Infrastructure Access

X7 Flag indicating access to the internet Categoric
Xi1g Source of lighting Categoric
X20 Type of cooking fuel used Categoric
X1 Flag indicating access to proper sanitation Categoric
X22 Main source of drinking water Categoric
Health and Social Vulnerability

X2 Flag indicating whether the household is considered vulnerable Categoric
Xs Flag indicating iliness without outpatient treatment Categoric
X13 Flag indicating ownership of BPJS PBI (health insurance for the poor) Categoric
Xoa Flag indicating whether the household is food insecure Categoric
Household Structure

X25 Number of household members Numeric

d. Splitting data into training and test set with proportion 80:20
e. Using training data set:
1) Standardized all numeric variables
2) Convert all categorical variables into dummy variables
3) Train and tune hyperparameters for both SPE & RUSBoost using Grid Search
and statified 5-fold cross validation and store the best model
f. Using test data set:
1) Standardized all numeric variables using parameters from training data set
2) Convert all categorical variables into dummy variables
3) Using the best model obtained from training, predict response class
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g. The prediction results were evaluated using the following metrics: AUC ROC, AUC
PR, Geometric Mean, F1 Score, Recall (sensitivity), specificity, MCC, and Cohen’s
Kappa. For threshold-dependent metrics, use default threshold (0.5) as well as
optimal threshold based on Youden Index.

h. Make conclusions and recommendations.

23 Self-Paced Ensemble (SPE)

Self-Paced Ensemble (SPE), developed byLiu et al., (2020), is an ensemble
learning with undersampling mechanism to reduce trivial and noise observations while
giving greater weight to more important data. Sampling in SPE is controlled by a self-
paced procedure meaning that every observation contributes to the process. SPE
iteratively selects the most informative sample from the majority class based on the
hardness distribution, which is an error function, such as absolute error, squared error,
and cross entropy. SPE utilizes other learning algorithms, such as decision trees, as
its underlying model.

Suppose D is a training dataset containing all observations (x, y), with data sets
from the minority class P and data sets from the minority class N. Because the data is
imbalanced, |P| < |N|. Let F be the ensemble classification model composed of T
classification models fz, while F(x;) is the probability that observation x; is in the positive
(minority) class. The hardness for observation (x,y) is a function of H(x,y,F) (Zhang et
al., 2021). Based on this hardness value, the training data is divided into k£ bins. The
observation in the /-th bin, B, is defined as:

-1 l
= —_—< < —

Using the training data set D, the hardness function H, the base classifier f'iterated
T times, and & bins, the SPE is constructed through the following stages (Liu et al.,
2020):

a. Initiate dataset S using random undersampling technique, so that |P| ~ |Ny|
b. Train classifier fo using training set S
c. Fort=1toT:

1) Ensemble:

t—-1
1
R =3 ()
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2) Cut majority set into k bins with respect to H(x,y,F): By, B>, ..., Bk
3) Average hardness contribution in /-th bin:
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5) Unnormalized sampling weight of /-th bin: w;, = e
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4) Update self-paced factor
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7) Train f; using newly under-sampled subset

6) Under-sample from [-th bin with
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d. Return final ensemble:

F(x) = 231 fn ().

In steps 3.b and 3.c, the hardness value is updated to select the most suitable
samples for the current ensemble model. Step 3.e uses the tangent function to control
the growth of the self-paced factor a. The a value controls the weight reduction rate for
undersampling, which gradually reduces the weights on large bins. In the initial
iteration, a = 0, and in the final iteration, a — «. When a is small, the training procedure
focuses on informative borderline examples, so noise and outliers do not significantly
affect the model. Furthermore, as « increases, the training process focuses on difficult
data but still uses a few trivial samples to prevent overfitting.

24 RUSBoost

RUSBoost (Seiffert et al., 2010), as its name suggests, applies random
undersampling to the boosting algorithm. At each iteration, the training process is
performed using the random undersampled data after weighting. Samples in the
majority class are initially ignored, and the boosting process is performed step by step
on the remaining data. This process is repeated according to the specified number of
iterations.

Given training data D with M observations and y as the binary response variable,
where P is the minority observation and N is the majority observation, the RUSBoost
algorithm is described as follows:

a. Define initial weight for each observation wi(i)=1/M;i=1,2, ..., M.

b. For each iteration ¢, where t=1, 2, ..., T, do:
1) Draw dataset S using random undersampling technique, so that |P| ~|N/|
2) Fit base classifier f; using dataset S, with respect to w;:
3) Calculate classification error

&= ) w-flwy) +filxy)
@y yizy
4) Calculate a, = =-
5) For each mis-classified observation, recalculate the weight
%(1+ft(xl-.yi)—ft(xl-,y:y¢yz)
t
c. Final predictions is class with highest value:

Wi = we(Da

T
1
F(x) = argmax ) f,(x,y)log—
yer & ag

2.5 Evaluation Metrics for Imbalance Class Classification

Accuracy often fails to adequately reflect a model's performance in scenarios with
imbalanced class distributions. Therefore, there are more relevan evaluation criteria
derived from the counts of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) that are extracable from a confusion matrix (Liu et al., 2020).
In addition, the area under receiver operating characteristic curve (AUC-ROC), the
area under precision-recall curve (AUC-PR) and Cohen's Kappa (McHugh, 2012) can
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also be used to evaluate classification performance in imbalance data. Confusion
matrix-based metrics for imbalance classification evaluation are shown in Table 3.

Table 3 Confusion Matrix Based Metrics for Imbalance Classification Evaluation
Metrics Formula

Recall (sensitivity) TP
TP +FN
Precision TP
TP + FP
Spesificity TN
TN + FP
F1-Score Recall X Precision

. Recall + Precision

Geometric Mean VRecall x Precision

Matthew’s Correlation TP XTN — FP XFN
o
Coefficient J(TP + FP)(TP + FN)(TN + FP)(TN + FN)

3. Results and Discussion
3.1 Results

A grid search with stratified 5-fold cross-validation was used to find the best
hyperparameters for both Self-Paced Ensemble (SPE) and RUSBoost models. For
SPE, the best model was achieved with 20 bins, 200 estimators, and a maximum tree
depth of 10. For RUSBoost, the best combination was a learning rate of 0.05, 100
estimators, and the same maximum depth of 10. Both models use decision tree as
base classifier. These settings were used to train the final models for comparison.

Table 4 Comparison of SPE and RUSBoost in Poverty Status Classification

Self-Paced Ensemble (SPE) RUSBoost

Metrics

Default Optimal Default Optimal
AUC ROC 0.8148 0.8148 0.8185 0.8185
AUC PR 0.1594 0.1594 0.1701 0.1701
Geometric Mean 0.7286 0.6671 0.7436 0.6932
F1 Score 0.2055 0.2179 0.1900 0.2198
Recall (Sensitivity) 0.6550 0.5100 0.7250 0.5600
Precision 0.1219 0.1386 0.1094 0.1368
Specificity 0.8104 0.8726 0.7628 0.8580
Matthew’s Correlation Coefficient 0.2211 0.2112 0.2153 0.2207
Cohen’s Kappa 0.1501 0.1674 0.1318 0.1682

The analysis result in Table 4 shows that both models demonstrated quite similar
performance in predicting poverty status in West Java, as indicated by relatively high
AUC-ROC values. The SPE model produced an AUC-ROC of 0.814, whereas
RUSBoost was slightly better (0.8185). The AUC-PR, that is particularly more relevant
in the context of imbalanced data than AUC-ROC, exhibited RUSBoost's superiority
(0.170) over SPE (0.159). Both AUC-ROC and AUC-PR values remained constant
across both thresholds because these metrics were not threshold-dependent.
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RUSBoost demonstrated the highest recall at 0.725 using default threshold 0.5,
meaning that it was able to detect approximately 72.5% of all poor families. The SPE
recorded a recall of 0.655, which, although quite good, was still lower. Specificity, that
reflects the ability to identify non-poor households, was higher for SPE (0.810), than
for RUSBoost (0.763). RUSBoost recorded higer G-Mean value of 0.744 compared to
SPE's 0.729. However, SPE slightly outperforms RUSBoost in terms of F1 Score
(0.206 vs. 0.190). SPE recorded an MCC of 0.221, which was slightly higher than
RUSBoost (0.215). For Kappa, SPE obtained 0.150, whereas RUSBoost recorded 0.132.

The probability threshold adjustment using the Youden Index shifted the results.
The recall decreased drastically in both models: from 0.655 to 0.510 in SPE and from
0.725 to 0.560 in RUSBoost. Specificity increased from 0.8104 to 0.8726 in SPE and
from 0.7628 to 0.8580 in RUSBoost. The G-mean decreased to 0.6671 in SPE and
0.6932 in RUSBoost. In contrast, the F1 Score increased to 0.2179 in SPE and to
0.2198 in RUSBoost. The MCC value in SPE decreased slightly to 0.2112, while in
RUSBoost it increased to 0.2207. Kappa increased in both models, from 0.1501 to
0.1674 in SPE, and from 0.1318 to 0.1682 in RUSBoost.

Based on previous evaluation results, the RUSBoost model with the default
threshold was considered as the best model (among the compared models) for
classifying household poverty status. To understand how this model makes decisions,
feature importance that measures the contribution of each feature to the model
performance was calculated using permutation feature importance (PFIl) approach
(Quay, 2022) as shown in Figure 1. The PFI of the RUSBoost model shows that the
most influential factors were the number of household members, the percentage of
bankable household members, and the floor area of the house, followed by indicators
of access to information, education, and social vulnerabilities.

Number of household members (X25) [
Percentage of bankable household members (X3) NN
Floor area (in square meters) of house (X18) [N
Flag indicating access to the internet (X7) [l
Highest education level attained in the household (X2 3)

Years of schooling of the head of household (X1)

||

||

Percentage of illiterate household members (X4)
Flag indicating whether the household is food insecure (X24) B
Flag indicating illness without outpatient treatment (X8) [
Main source of drinking water (X22) I

0

0.05 0.1 0.15 0.2

Figure 1 Top 10 Most Important Variables in the RUSBoost Model

The partial dependence plot of the RUSBoost model (Figure 2) confirms that the
number of household members, percentage of bankable household members, and
floor area of the house are the most influential factors in predicting poverty in West
Java. The probability of poverty increases sharply up to five household members,
whereas financial access and the size of the dwelling are inversely related to the risk
of poverty. Educational variables, such as the head of household's years of schooling
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and illiteracy rate, affect poverty status, although to a smaller degree. Overall, the
model considers a combination of demographic, economic, and educational aspects

to determine the poverty status of a household.
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Figure 2 Partial Dependence Plot of Numeric Variables in the RUSBoost Model

3.2 Discussion

The findings indicate that RUSBoost was consistently better than SPE in most
important metrics, regardless of the threshold applied. RUSBoost achieved higher
AUC-ROC/PR and G-mean. RUSBoost also has better F1 Score after threshold
adjustment. This suggests that RUSBoost was more effective in handling imbalanced
data and provided better classification balance between poor and non-poor
households.

The higher recall achieved by RUSBoost at the default threshold demonstrated its
capability to identify more poor households. This is important because the poverty
case, which is minority class, represents the target of interest. However, this
improvement came with a trade-off. RUSBoost was more aggressive than SPE in
assigning poor labels, represented by the lower specificity, resulting in more false
positives. In contrast, SPE was more conservative, which explains its higher specificity
but lower recall. The decrease in recall and the increase in specificity after threshold
adjustment using Youden Index reflect a classic trade-off between detecting poor
households and avoiding false positives. In practical terms, policymakers must
consider whether missing true poverty cases (false negatives) or mislabeling non-poor
households (false positives) is more costly. The increase in F1 Score for both models
after threshold adjustment indicates improved precision in positive predictions,
particularly in RUSBoost. Meanwhile, the improvement in MCC and Kappa values
shows that adjusting the threshold increases the overall agreement between the
predicted and actual labels, despite the lower recall.

The feature importance analysis using PFI suggests that poverty in West Java is
strongly influenced by demographic burden (household size), economic capacity
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(bankable household members), and housing conditions (floor area). The partial
dependence plot demonstrates how these variables affect the probability of poverty.
Larger households increase poverty risk, while better financial access and larger living
spaces reduce it. Meanwhile, education-related factors contribute moderately.

These results highlight that a combination of demographic, economic, and
educational factors explain poverty status. The RUSBoost model with the default
threshold provides the most balanced and effective classification tool for identifying
poor households in imbalanced datasets.

4. Conclusions and Recommendations

RUSBoost consistently outperforms SPE across most key evaluation criteria,
regardless of the threshold type used for predicting poverty classification in West Java,
where class imbalance was present. It offers better classification balance, achieves
the highest AUC-ROC and AUC-PR scores, and produces the strongest F1-score after
threshold adjustment. When the goal is to identify as many poor households as
possible, the default threshold of RUSBoost is ideal, delivering high recall along with a
solid G-mean. However, if prioritizing precision is necessary, the Youden Index
threshold can be used, with the trade-off of undetected poor households.

For future research, it is recommended to explore other ensemble methods such
as SMOTEBoost, EasyEnsemble, or BalancedRandomForest to assess whether they
offer improvements over RUSBoost and SPE. Testing the models on different regions
or timeframes also can be done to evaluate their generalizability. In addition, applying
spatial-based modeling algorithms could capture geographic patterns of poverty.
Finally, integrating explainability techniques like SHAP or LIME to understand how the
models make decisions, which is crucial for policy interpretation.
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