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Abstract 

 Class imbalance remains a major challenge in classification modelling that 

frequently leads to biased predictive models. This study aimed to compare two ensemble 

techniques based on an undersampling approach, namely Self-Paced Ensemble and 

RUSBoost, for handling imbalanced classification in poverty identification in West Java. 

The results suggested that RUSBoost consistently outperformed Self-Paced Ensemble 

across the most critical metrics. It showed better balance in classification outcomes. 

When the objective is to maximize the identification of poor households, the default 

threshold in the RUSBoost model was prefered. On the other hand, if precision is 

prioritized due to limited resources, the Youden Index threshold offers a better 

alternative. Given the overall evaluation metrics, RUSBoost with the default threshold 

was suggested as the most reliable and well-balanced option among the compared 

models for classifying poor households in West Java under imbalanced data condition. 
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1. Introduction 

Poverty is a multidimensional problem that involves economic, social, and political 

aspects. The issue is because it relates to the most basic needs in life, and it is a global 

problem faced by many countries. Addressing this persistent challenge demands more 

effective and efficient solutions, particularly through the application of data analytical 

techniques to develop predictive and classification models. These models can utilize 

empirical data to identify populations at risk of poverty. In modeling context, classifying 

poverty status is challenging due to the imbalanced data problem.   

Imbalance data is characterized by a disproportionate number of observations 

across different response classes. The imbalance ratio (IR), which quantifies the 

disparity between the majority and minority classes, can vary considerably depending 

on the specific application. An IR ranging from 100:1 to 1,000:1 is considered as 

extreme imbalance (Hasanin et al., 2019). In poverty data, non-poor households form 

the larger group or majority class, while poor ones are the smaller group or minority 

class. For instance, in West Java, Indonesia, 7,6% of household were classified as 

poor in 2023 (Badan Pusat Statistik, 2023). If not handled through appropriate 

techniques, it often leads to poor model performance. Such models typically exhibit a 

bias towards the majority class, as their training process is predominantly influenced 

by majority class, while treating minority class as noise. Consequently, the model 

struggles to accurately learn the distinctive characteristics of the minority class. 

Furthermore, global accuracy metrics can be misleading, as models may favor 

the majority class and score high accuracy (Rahmadini & Santoso, 2025), but they may 

still perform poorly on the minority class (Wang et al., 2021). 

A variety of methodologies have been developed to mitigate the effects of class 

imbalance in classification. In general, these methodologies are divided into three 

groups (Altalhan et al., 2025). The first involves interventions at the data level, primarily 

through resampling techniques designed to rebalance class distributions. This includes 

oversampling, which augments the number of minority class observations, and 

undersampling, which reduces the number of majority class observations. While 

oversampling can be effective, it carries the risk of overfitting and often demands 

substantial computational resources (Zhang et al., 2021), hence less practical for 

large-scale datasets. On the other hand, while computationally lighter, undersampling 

risks the loss of important information from the majority class. The second category of 

approaches focuses on modifying classification algorithms to account for the 

significance of the minority class during the training process. An example is cost-

sensitive learning, where different misclassification costs are assigned to each class. 

However, the pre-defined cost matrix, which typically needs expert domain knowledge 

for its accurate construction, is often not available (Liu et al., 2020). The final group 

consists of hybrid methods designed to combine the strengths of each approach while 

reducing their respective limitations. This includes combined sampling techniques, 

algorithmic resampling strategies, and ensembles of resampled datasets (Altalhan et 

al., 2025). 

An increasingly popular and effective strategy for handling data imbalance is the 

application of resampling procedures within ensemble learning algorithms. Ensemble 

methods have demonstrated robust performance to handle imbalanced datac 

classification. When applying ensemble models to datasets with clearly defined 
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features, undersampling proved more effective than oversampling because it delivers 

strong classification performance with significantly lower computational cost (Jeong et 

al., 2022). This finding has spurred the development and implementation of several 

ensemble techniques incorporating undersampling, eg. Balanced Random Forest 

(Agusta & Adiwijaya, 2018; Fulazzaky et al., 2024), UnderBagging which combines 

undersampling with bagging (Galar et al., 2012; Permatasari et al., 2016), RUSBoost 

that combine undersampling and boosting (Fulazzaky et al., 2024; Galar et al., 2012; 

Permatasari et al., 2016; Seiffert et al., 2010) and Self-Paced Ensemble (SPE) (Bano 

et al., 2024; Chen et al., 2023; Liu et al., 2020; Ristea & Ionescu, 2021).   

The final two algorithms discussed utilize ensemble learning that perform 

undersampling in the learning process. RUSBoost is known for its computational 

efficiency, which combines random undersampling with a boosting algorithm (Seiffert 

et al., 2010). SPE introduces an innovative learning mechanism that iteratively adjusts 

the training process based on the classification hardness of the data that enhances 

adaptability to the complex characteristics of large datasets (Liu et al., 2020).  

This study compared the performance of SPE and RUSBoost in classifying the 

poverty status of households in West Java. Due to class imbalance, performance 

evaluation focused on more relevant metrics for this scenario rather than accuracy. 

Evaluation was conducted using two threshold approaches: the default (0.5) and an 

optimal threshold based on the Youden Index (Hassanzad & Hajian-Tilaki, 2024). The 

better model was then chosen for further analysis, including variable importance and 

partial dependence plots, to investigate the effects of features on poverty status. 

 
2. Data and Methodology 

2.1 Data 

The data used in this study were obtained from the 2023 National Socio-Economic 

Survey (Survei Sosial Ekonomi Nasional/Susenas) in West Java (Badan Pusat 

Statistik, 2023b). There was a total of 25,890 households, of which 1,073 (4.14%) were 

poor households unweighted, representing an imbalanced condition, as shown in 

Table 1. Households are considered poor if their monthly per-capita expenditure is less 

than the district/city (kabupaten/kota) poverty line.  

 

Table 1 Proportion of Household in West Java Based on Poverty Status 

Poverty Status 
Number of 
Household 

Proportion Based on 
Sample 

Weighted Proportion 
(Official) 

Poor 1,073 4.14% 7.62 % 
Non-poor 24,817 95.86% 92.38% 

 

The response for modeling was poverty status (unweigted) while the explanatory 

variables consisted of 20 categorical and six numeric variables (Table 2), including 

education, financial inclusion, housing condition, basic infrastructure, health and social 

ulnerability and household structure.  

2.2 Data Analysis and Modeling 

Data analysis and modeling in this study were performed as follows: 
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a. Prepare Susenas data and poverty line data of West Java in 2023 

b. Select relevant variables based on previous research 

c. Feature engineering: 

1) Define a response variable by comparing capita expenditure and poverty line 

2) Regroup class for independent variables 

Table 2 List of Variable and Its Description 

Variable Description Type 

Response   
Y Household poverty status Categoric 

Education  
 

X1  Years of schooling of the head of household Numeric 
X4  Percentage of illiterate household members Numeric 
X23  Highest education level attained in the household Categoric 
X14  Flag indicating ownership of KIP/PIP (Smart Indonesia Program card) Categoric 

Economic and Financial Inclusion  
X3  Percentage of bankable household members Numeric 
X5  Flag indicating whether the household receives cash transfers Categoric 
X9  Flag indicating BPNT (Bantuan Pangan Non-Tunai) recipient Categoric 
X10  Flag indicating PKH (Program Keluarga Harapan) recipient Categoric 
X11  Flag indicating KKS (Kartu Keluarga Sejahtera) ownership Categoric 
X12  Flag indicating receipt of regional/local government assistance Categoric 

Housing Conditions  
X15  Roofing material of the house  
X16  Wall material of the house Categoric 
X17  Flooring material of the house Categoric 
X18  Floor area (in square meters) of house Numeric 
X6  Flag indicating land ownership Categoric 

Basic Infrastructure Access  
X7  Flag indicating access to the internet Categoric 
X19  Source of lighting Categoric 
X20  Type of cooking fuel used Categoric 
X21  Flag indicating access to proper sanitation Categoric 
X22  Main source of drinking water Categoric 

Health and Social Vulnerability  
X2  Flag indicating whether the household is considered vulnerable Categoric 
X8  Flag indicating illness without outpatient treatment Categoric 
X13  Flag indicating ownership of BPJS PBI (health insurance for the poor) Categoric 
X24  Flag indicating whether the household is food insecure Categoric 

Household Structure  
X25  Number of household members Numeric 

d. Splitting data into training and test set with proportion 80:20 

e. Using training data set: 

1) Standardized all numeric variables 

2) Convert all categorical variables into dummy variables 

3) Train and tune hyperparameters for both SPE & RUSBoost using Grid Search 

and statified 5-fold cross validation and store the best model 

f. Using test data set: 

1) Standardized all numeric variables using parameters from training data set 

2) Convert all categorical variables into dummy variables 

3) Using the best model obtained from training, predict response class 
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g. The prediction results were evaluated using the following metrics: AUC ROC, AUC 

PR, Geometric Mean, F1 Score, Recall (sensitivity), specificity, MCC, and Cohen’s 

Kappa. For threshold-dependent metrics, use default threshold (0.5) as well as 

optimal threshold based on Youden Index. 

h. Make conclusions and recommendations. 

 

2.3 Self-Paced Ensemble (SPE) 

Self-Paced Ensemble (SPE), developed byLiu et al., (2020), is an ensemble 

learning with undersampling mechanism to reduce trivial and noise observations while 

giving greater weight to more important data. Sampling in SPE is controlled by a self-

paced procedure meaning that every observation contributes to the process. SPE 

iteratively selects the most informative sample from the majority class based on the 

hardness distribution, which is an error function, such as absolute error, squared error, 

and cross entropy. SPE utilizes other learning algorithms, such as decision trees, as 

its underlying model. 

Suppose D is a training dataset containing all observations (x, y), with data sets 

from the minority class P and data sets from the minority class N. Because the data is 

imbalanced, |P| < |N|. Let F be the ensemble classification model composed of T 

classification models ft, while F(xi) is the probability that observation xi is in the positive 

(minority) class. The hardness for observation (x,y) is a function of H(x,y,F) (Zhang et 

al., 2021). Based on this hardness value, the training data is divided into k bins. The 

observation in the l-th bin, Bl, is defined as: 

𝐵𝑙 = {(𝑥, 𝑦)|
𝑙 − 1

𝑘
≤ 𝐻(𝑥, 𝑦, 𝐹) ≤

𝑙

𝑘
} 

Using the training data set D, the hardness function H, the base classifier f iterated 

T times, and k bins, the SPE is constructed through the following stages (Liu et al., 

2020): 

a. Initiate dataset S using random undersampling technique, so that |P|  |N0| 
b. Train classifier f0 using training set S 
c. For t = 1 to T: 

1) Ensemble: 

𝐹𝑡(𝑥) =  
1

𝑡
∑ 𝑓𝑗(𝑥)

𝑡−1

𝑗=0

 

2) Cut majority set into k bins with respect to H(x,y,F): B1, B2, …, Bk 
3) Average hardness contribution in l-th bin: 

ℎ𝑙 = ∑
𝐻(𝑥𝑠, 𝑦𝑠 , 𝐹𝑖)

|𝐵𝑙|𝑠𝜖𝐵𝑙

 

4) Update self-paced factor 

𝛼 = 𝑡𝑎𝑛 (
𝑖𝜋

2𝑡
) 

5) Unnormalized sampling weight of l-th bin: 𝑤𝑙 =
1

ℎ𝑙+𝛼
 

6) Under-sample from l-th bin with 
𝑤𝑙

∑ 𝑝𝑚𝑚
∙ |P| sample 

7) Train ft using newly under-sampled subset 
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d. Return final ensemble:  

𝐹(𝑥) =  
1

𝑇
∑ 𝑓𝑚(𝑥)𝑇

𝑚=1 . 

 

In steps 3.b and 3.c, the hardness value is updated to select the most suitable 

samples for the current ensemble model. Step 3.e uses the tangent function to control 

the growth of the self-paced factor α. The α value controls the weight reduction rate for 

undersampling, which gradually reduces the weights on large bins. In the initial 

iteration, α = 0, and in the final iteration, α → ∞. When α is small, the training procedure 

focuses on informative borderline examples, so noise and outliers do not significantly 

affect the model. Furthermore, as α increases, the training process focuses on difficult 

data but still uses a few trivial samples to prevent overfitting. 

2.4 RUSBoost 

RUSBoost (Seiffert et al., 2010), as its name suggests, applies random 

undersampling to the boosting algorithm. At each iteration, the training process is 

performed using the random undersampled data after weighting. Samples in the 

majority class are initially ignored, and the boosting process is performed step by step 

on the remaining data. This process is repeated according to the specified number of 

iterations.  

Given training data D with M observations and y as the binary response variable, 

where P is the minority observation and N is the majority observation, the RUSBoost 

algorithm is described as follows: 

a. Define initial weight for each observation w1(i) = 1 / M ; i = 1, 2, …, M. 
b. For each iteration t, where t = 1, 2, …, T, do: 

1) Draw dataset S using random undersampling technique, so that |P|  |Nt| 
2) Fit base classifier ft using dataset St, with respect to wi: 
3) Calculate classification error 

𝜖𝑡 = ∑ 𝑤𝑡(𝑖)(1 − 𝑓𝑡(𝑥𝑖 , 𝑦𝑖) +
(𝑖,𝑦); 𝑦𝑖≠𝑦

𝑓𝑡(𝑥𝑖 , 𝑦)) 

4) Calculate 𝛼𝑡 =
𝜖𝑡

1−𝜖𝑡
 

5) For each mis-classified observation, recalculate the weight 

𝑤𝑡+1 =  𝑤𝑡(𝑖)𝛼𝑡

1
2

(1+𝑓𝑡(𝑥𝑖,𝑦𝑖)−𝑓𝑡(𝑥𝑖,𝑦:𝑦≠𝑦𝑖)
 

c. Final predictions is class with highest value:  

𝐹(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦∈𝑌

∑ 𝑓𝑡(𝑥, 𝑦)log
1

𝛼𝑡

𝑇

𝑡=1

 

 
2.5 Evaluation Metrics for Imbalance Class Classification 

Accuracy often fails to adequately reflect a model's performance in scenarios with 

imbalanced class distributions. Therefore, there are more relevan evaluation criteria 

derived from the counts of true positives (TP), false positives (FP), true negatives (TN), 

and false negatives (FN) that are extracable from a confusion matrix (Liu et al., 2020). 

In addition, the area under receiver operating characteristic curve (AUC-ROC), the 

area under precision-recall curve (AUC-PR) and Cohen's Kappa (McHugh, 2012) can 
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also be used to evaluate classification performance in imbalance data. Confusion 

matrix-based metrics for imbalance classification evaluation are shown in Table 3. 

 
 Table 3 Confusion Matrix Based Metrics for Imbalance Classification Evaluation 

Metrics Formula 

Recall (sensitivity) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Spesificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F1-Score 
2 ∙

𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Geometric Mean √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

Matthew’s Correlation 
Coefficient 

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

3. Results and Discussion 

3.1 Results 

A grid search with stratified 5-fold cross-validation was used to find the best 

hyperparameters for both Self-Paced Ensemble (SPE) and RUSBoost models. For 

SPE, the best model was achieved with 20 bins, 200 estimators, and a maximum tree 

depth of 10. For RUSBoost, the best combination was a learning rate of 0.05, 100 

estimators, and the same maximum depth of 10. Both models use decision tree as 

base classifier. These settings were used to train the final models for comparison. 

 

Table 4 Comparison of SPE and RUSBoost in Poverty Status Classification 

Metrics 
Self-Paced Ensemble (SPE) RUSBoost 

Default Optimal Default Optimal 

AUC ROC 0.8148 0.8148 0.8185 0.8185 
AUC PR 0.1594 0.1594 0.1701 0.1701 
Geometric Mean 0.7286 0.6671 0.7436 0.6932 
F1 Score 0.2055 0.2179 0.1900 0.2198 
Recall (Sensitivity) 0.6550 0.5100 0.7250 0.5600 
Precision 0.1219 0.1386 0.1094 0.1368 
Specificity 0.8104 0.8726 0.7628 0.8580 
Matthew’s Correlation Coefficient 0.2211 0.2112 0.2153 0.2207 
Cohen’s Kappa 0.1501 0.1674 0.1318 0.1682 

 

The analysis result in Table 4 shows that both models demonstrated quite similar 

performance in predicting poverty status in West Java, as indicated by relatively high 

AUC-ROC values. The SPE model produced an AUC-ROC of 0.814, whereas 

RUSBoost was slightly better (0.8185). The AUC-PR, that is particularly more relevant 

in the context of imbalanced data than AUC-ROC, exhibited RUSBoost's superiority 

(0.170) over SPE (0.159). Both AUC-ROC and AUC-PR values remained constant 

across both thresholds because these metrics were not threshold-dependent. 
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RUSBoost demonstrated the highest recall at 0.725 using default threshold 0.5, 

meaning that it was able to detect approximately 72.5% of all poor families. The SPE 

recorded a recall of 0.655, which, although quite good, was still lower. Specificity, that 

reflects the ability to identify non-poor households, was higher for SPE (0.810), than 

for RUSBoost (0.763). RUSBoost recorded higer G-Mean value of 0.744 compared to 

SPE's 0.729. However, SPE slightly outperforms RUSBoost in terms of F1 Score 

(0.206 vs. 0.190). SPE recorded an MCC of 0.221, which was slightly higher than 

RUSBoost (0.215). For Kappa, SPE obtained 0.150, whereas RUSBoost recorded 0.132. 

The probability threshold adjustment using the Youden Index shifted the results. 

The recall decreased drastically in both models: from 0.655 to 0.510 in SPE and from 

0.725 to 0.560 in RUSBoost. Specificity increased from 0.8104 to 0.8726 in SPE and 

from 0.7628 to 0.8580 in RUSBoost. The G-mean decreased to 0.6671 in SPE and 

0.6932 in RUSBoost. In contrast, the F1 Score increased to 0.2179 in SPE and to 

0.2198 in RUSBoost. The MCC value in SPE decreased slightly to 0.2112, while in 

RUSBoost it increased to 0.2207. Kappa increased in both models, from 0.1501 to 

0.1674 in SPE, and from 0.1318 to 0.1682 in RUSBoost. 

Based on previous evaluation results, the RUSBoost model with the default 

threshold was considered as the best model (among the compared models) for 

classifying household poverty status. To understand how this model makes decisions, 

feature importance that measures the contribution of each feature to the model 

performance was calculated using permutation feature importance (PFI) approach 

(Quay, 2022) as shown in Figure 1. The PFI of the RUSBoost model shows that the 

most influential factors were the number of household members, the percentage of 

bankable household members, and the floor area of the house, followed by indicators 

of access to information, education, and social vulnerabilities. 

 

 

Figure 1 Top 10 Most Important Variables in the RUSBoost Model 

 

The partial dependence plot of the RUSBoost model (Figure 2) confirms that the 

number of household members, percentage of bankable household members, and 

floor area of the house are the most influential factors in predicting poverty in West 

Java. The probability of poverty increases sharply up to five household members, 

whereas financial access and the size of the dwelling are inversely related to the risk 

of poverty. Educational variables, such as the head of household's years of schooling 
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and illiteracy rate, affect poverty status, although to a smaller degree. Overall, the 

model considers a combination of demographic, economic, and educational aspects 

to determine the poverty status of a household. 

 

 
Figure 2 Partial Dependence Plot of Numeric Variables in the RUSBoost Model 

 

3.2 Discussion 

The findings indicate that RUSBoost was consistently better than SPE in most 

important metrics, regardless of the threshold applied. RUSBoost achieved higher 

AUC-ROC/PR and G-mean. RUSBoost also has better F1 Score after threshold 

adjustment. This suggests that RUSBoost was more effective in handling imbalanced 

data and provided better classification balance between poor and non-poor 

households. 

The higher recall achieved by RUSBoost at the default threshold demonstrated its 

capability to identify more poor households. This is important because the poverty 

case, which is minority class, represents the target of interest. However, this 

improvement came with a trade-off. RUSBoost was more aggressive than SPE in 

assigning poor labels, represented by the lower specificity, resulting in more false 

positives. In contrast, SPE was more conservative, which explains its higher specificity 

but lower recall. The decrease in recall and the increase in specificity after threshold 

adjustment using Youden Index reflect a classic trade-off between detecting poor 

households and avoiding false positives. In practical terms, policymakers must 

consider whether missing true poverty cases (false negatives) or mislabeling non-poor 

households (false positives) is more costly. The increase in F1 Score for both models 

after threshold adjustment indicates improved precision in positive predictions, 

particularly in RUSBoost. Meanwhile, the improvement in MCC and Kappa values 

shows that adjusting the threshold increases the overall agreement between the 

predicted and actual labels, despite the lower recall. 

The feature importance analysis using PFI suggests that poverty in West Java is 

strongly influenced by demographic burden (household size), economic capacity 
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(bankable household members), and housing conditions (floor area). The partial 

dependence plot demonstrates how these variables affect the probability of poverty. 

Larger households increase poverty risk, while better financial access and larger living 

spaces reduce it. Meanwhile, education-related factors contribute moderately. 

These results highlight that a combination of demographic, economic, and 

educational factors explain poverty status. The RUSBoost model with the default 

threshold provides the most balanced and effective classification tool for identifying 

poor households in imbalanced datasets. 

 

4. Conclusions and Recommendations 

RUSBoost consistently outperforms SPE across most key evaluation criteria, 

regardless of the threshold type used for predicting poverty classification in West Java, 

where class imbalance was present. It offers better classification balance, achieves 

the highest AUC-ROC and AUC-PR scores, and produces the strongest F1-score after 

threshold adjustment. When the goal is to identify as many poor households as 

possible, the default threshold of RUSBoost is ideal, delivering high recall along with a 

solid G-mean. However, if prioritizing precision is necessary, the Youden Index 

threshold can be used, with the trade-off of undetected poor households.  

For future research, it is recommended to explore other ensemble methods such 

as SMOTEBoost, EasyEnsemble, or BalancedRandomForest to assess whether they 

offer improvements over RUSBoost and SPE. Testing the models on different regions 

or timeframes also can be done to evaluate their generalizability. In addition, applying 

spatial-based modeling algorithms could capture geographic patterns of poverty. 

Finally, integrating explainability techniques like SHAP or LIME to understand how the 

models make decisions, which is crucial for policy interpretation. 
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