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Abstract 

 This study evaluates environmental quality and urban walkability in the 

Dongdaemun district through geospatial semantic segmentation of street-view imagery. 

A DeepLab ResNet101 model, pre-trained on the ADE20K dataset and implemented 

using the GluonCV framework, was applied to Google Street View images collected at 

40-meter intervals in four cardinal directions. Pixel-level segmentation was used to 

quantify key environmental features such as greenery, sky visibility, pavement, and road 

surfaces. Based on these visual attributes, composite indicators representing comfort, 

convenience, and safety were derived, leading to the calculation of an Integrated Visual 

Walkability index. The results reveal clear spatial variations in walkability across the 

study area, highlighting areas with favorable pedestrian environments and zones 

requiring improvement. Although the analysis is constrained by image quality and spatial 

coverage, the findings demonstrate the effectiveness of deep learning–based semantic 

segmentation for large-scale environmental assessment. This approach provides a 

scalable and data-driven framework to support evidence-based urban planning and 

sustainable city development. 

 

Keywords: Deep Learning, Geospatial Data, Semantic Segmentation, Urban Sustainability, 

Walkability. 
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1. Introduction 

Walkability is widely recognized as an important factor influencing physical activity, 

public health, and overall urban livability. Despite the well-documented health benefits 

of regular physical activity, many adults in developed countries still do not engage in 

sufficient physical activity (Dyck et al. 2011). To promote active living, it is important to 

understand the multidimensional factors that shape walking behavior. Recent studies 

have shown that objectively measured neighborhood attributes—such as residential 

density, street connectivity, and land use mix—are strongly associated with walking 

levels and broader physical activity patterns (Handy et al. 2002; Saelens et al. 2003; 

Owen et al. 2007; Sallis et al. 2009; Dyck et al. 2011). Adults living in environments 

with well-connected streets, diverse land uses, and higher residential density tend to 

exhibit more pedestrian activity than those in low-walkable neighborhoods. 

Consequently, researchers and urban planners emphasize the development of highly 

walkable environments to support physical activity and improve public health 

outcomes. In addition to physical characteristics, neighborhood perception also affects 

residential satisfaction and overall well-being. Prior research indicates that 

neighborhood satisfaction is associated with happiness, mental health, and quality of 

life (Michael et al. 2006; Van Dyck et al. 2010). Furthermore, studies have found that 

social and leisure activities within neighborhoods—such as participation in local events 

or informal social interactions—can positively influence neighborhood satisfaction 

(Wilson et al. 2004; Forum 2007). These findings highlight the importance of 

considering both physical and perceptual aspects when evaluating urban 

environments. 

Traditional assessments of walkability have relied on field surveys, manual 

audits, or subjective perception questionnaires, which are often time-consuming, 

resource-intensive, and limited in spatial coverage. Recent advances in computer 

vision have enabled automated and scalable analysis of the urban visual environment 

using street-view imagery. In particular, deep learning–based semantic segmentation 

allows pixel-level identification of environmental components such as buildings, 

vegetation, sky openness, pavement surfaces, and physical obstacles. These visual 

characteristics directly influence pedestrian comfort, safety, and spatial experience, 

making them valuable indicators for evaluating walkability. In this study, a DeepLab 

semantic segmentation model is applied to Google Street View images to quantify key 

urban environmental features throughout the Dongdaemun district of Seoul. From the 

extracted visual attributes, composite indicators representing comfort, convenience, 

and safety are derived and integrated into an Integrated Visual Walkability (IVW) index. 

The resulting spatial evaluation provides detailed insights into environmental quality 

and walkability patterns, offering practical guidance for urban planning, environmental 

management, and policy decision-making. 
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2. Related Work 

Recent research has increasingly leveraged street view imagery (SVI) and deep 

learning–based semantic segmentation to assess urban environments and walkability, 

moving beyond traditional surveys and site audits. These methods allow scalable, 

objective extraction of visual features that influence pedestrian experience and 

walkability patterns. For instance, Choi et al. (2024) applied semantic segmentation to 

Google Street View panoramas to model urban visual composition, defining typologies 

such as greenness, openness, and enclosure based on pixel-level imagery data. 

Ghose and Rai (2025) demonstrated a GeoAI approach for integrated visual walkability 

assessment, quantifying greenery, openness, pavement, and crowdedness across 

Kolkata, revealing significant intra-city variations in pedestrian infrastructure. Yu (2024) 

employed deep learning to evaluate temporal changes in walkability indicators (e.g., 

greenery, sidewalk coverage) in downtown Orlando, illustrating how visual 

characteristics evolve with urban development. Similarly, Smith et al. (2025) integrated 

objective street-level features with subjective assessments using deep CNNs to 

capture safety, aesthetics, and accessibility for walkability evaluation. 

Several studies focused on perceptual aspects of walkability. Choi and Kang 

(2025) modeled and explained perceived walkability in urban environments using 

semantic segmentation and explainable AI, extracting fine-grained visual features to 

identify which elements most strongly influence pedestrian judgments. Yang et al. 

(2025) developed a framework combining GeoAI and human perceptions to estimate 

walkability scores, highlighting the importance of integrating subjective perceptions 

with objective urban measures. Harmonizing semantic features with spatial predictors 

has been shown to improve urban visual composition modeling and walkability 

assessment (Pradana et al. 2025), while Li et al. (2025) demonstrated that 

spatiotemporal contrast learning can enhance street-view representation for urban 

analysis. Generative AI approaches, such as SAGAI (Perez and Fusco 2025), have 

also emerged to automate the mapping of streetscape elements into structured 

walkability indicators. Automated sidewalk mapping and urban feature extraction have 

further enhanced neighborhood-scale walkability analysis. Hamim et al. (2024) 

mapped sidewalks using street view imagery, while Hwang et al. (2024) applied 

regression models to spatial image features to predict walkability levels. Mushkani and 

Koseki (2026) proposed a participatory AI framework that integrates resident feedback 

with machine learning for inclusive walkability assessment. Zhang et al. (2025) used 

GeoAI-based semantic segmentation to quantify greenery and walkability metrics at 

the city scale. Huang et al. (2024) integrated streetscape images, machine learning, 

and space syntax to enhance walkability analysis in Seoul, demonstrating practical 

application in a dense urban context. 

Recent studies have also explored dynamic and temporal dimensions. Alvarez 

and Garcia (2025) evaluated walkability using objective street-view measures with 

regression models, while Nguyen et al. (2025) quantified visual indicators for 

walkability through semantic segmentation. Brown and Green (2025) assessed visual 

crowdedness using automated street-level image analysis, highlighting areas of high 
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pedestrian obstruction. Wilson and Taylor (2025) analyzed sidewalks and greenery to 

assess pedestrian safety and comfort, and Chen et al. (2025) applied deep learning 

and street-view analytics to measure perceived walkability in dense urban areas, 

emphasizing both physical and perceptual components. Collectively, these advances 

demonstrate the growing integration of AI, deep learning, and semantic segmentation 

in walkability research. However, relatively few studies have applied pixel-level 

semantic segmentation specifically to Seoul’s urban environment. This motivates the 

present study, which applies these methods to the Dongdaemun district to generate 

detailed insights into urban environmental quality and walkability patterns. 

3. Methodology 

This study adopts a systematic methodology grounded in recent advances in 

geospatial and urban analytics (Zhang et al. 2019), Google Street View–based 

environmental data extraction and sampling strategies (Zhang et al. 2019; Liu et al. 

2020), and deep learning–based semantic segmentation techniques for urban feature 

analysis (Cheng et al. 2022; Minaee et al. 2022) to evaluate urban environmental 

characteristics and walkability in the Dongdaemun district of Seoul, South Korea. The 

methodology is designed to ensure rigor, reproducibility, and spatial 

representativeness. It is divided into four main components: data collection and 

preprocessing, multi-directional sampling and data structuring, system architecture, 

and semantic segmentation with feature extraction, each contributing to building a 

structured and interpretable dataset for urban analysis. 

3.1 Data Collection and Preprocessing  

The first stage of this study focuses on acquiring high-quality geospatial and street-

level imagery, which forms the basis for all subsequent analyses. Accurate data 

collection is critical to ensure the reliability of semantic segmentation and the validity 

of derived indicators. This phase also establishes a reproducible spatial framework that 

allows consistent alignment between image pixels and real-world locations, a key 

factor in quantitative urban assessment. The research begins with acquiring high-

resolution geospatial and satellite imagery of the study area. The area was delineated 

using QGIS, where sampling points were systematically generated at 40-meter 

intervals to maintain uniform spatial coverage. This spatial framework ensures precise 

alignment between image pixels and real-world locations, supporting reproducibility 

and consistency in subsequent analyses. 

Figure 1 illustrates the spatial extent of the study area, showing the distribution 

of sampling points across Seodaemun-gu (yellow) and Dongdaemun (blue), with 

Dongdaemun serving as the primary focus for detailed geospatial analysis. The 

systematic placement of sampling points ensures uniform spatial coverage during data 

acquisition and processing. Each coordinate point was programmatically linked to the 

Google Street View (GSV) API 

(https://developers.google.com/maps/documentation/streetview), enabling automated 

retrieval of panoramic street-view images. To capture a complete 360° view of each 
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location, four images were obtained per point at 0°, 90°, 180°, and 270°. From 620 

sampling points, a total of 2,480 images were generated, of which 2,370 high-quality 

images were retained after removing blurred, distorted, or obstructed frames. 

Preprocessing steps included resizing images to 512×512 pixels, color 

normalization (RGB values scaled to [0,1]), cropping to remove redundant upper and 

lower frame regions, and quality control to eliminate images with obstructions such as 

vehicles or construction barriers. The processed images were systematically renamed 

according to coordinate ID and orientation (e.g., P123_90.jpg) and compiled into a 

Pandas DataFrame linking each image to its geographic coordinates and viewing 

direction. These procedures establish a reliable foundation for subsequent semantic 

segmentation and quantitative urban analysis. 

 

Figure 1: Extract The Study Area from The Map Using QGIS 

3.2 Multi-Directional Sampling and Data Structuring 

To fully capture the urban visual environment, a multi-directional sampling strategy was 

adopted, providing a comprehensive 360° perspective for each location. This approach 

ensures that key environmental attributes such as greenery, sky openness, and 

building enclosure are accurately represented. Systematically structuring these 

images with spatial metadata enables reproducibility and integration into machine 

learning pipelines for subsequent semantic analysis. 
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Figure 2: Road Network and Sampling Points of Dongdaemun, Seoul, South Korea (40 m Intervals) 

Figure 2 illustrates the spatial configuration of the road network and the 

systematically distributed 40-meter sampling points within the Dongdaemun district. 

Figure 2 illustrates the spatial configuration of the road network and systematically 

distributed sampling points within Dongdaemun. Each point represents a fixed 

geographic coordinate and forms the basis of the study’s conceptual framework, linking 

geospatial sampling to semantic segmentation for urban environmental assessment. 

The multi-directional sampling strategy ensures that each location captures the 

surrounding environment comprehensively, including greenery coverage, sky 

openness, pedestrian infrastructure, and building enclosure, which are key indicators 

for evaluating urban livability and walkability. The collected images provide a rich visual 

dataset, supporting a robust and representative analysis of street-level environmental 

conditions. 

 

Figure 3: Example of Street View Image Samples (SVIs) at Different Viewing Angles. Each image 

represents the same location, captured from four viewing directions to ensure comprehensive visual 
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coverage. The numbers indicate the data collection angles from the same point: 0° (front view), 90° 

(right view), 180° (back view), and 270° (left view) 

Figure 3 presents representative SVIs captured at 0°, 90°, 180°, and 270° from 

the same location, illustrating the multi-directional sampling approach for complete 

360° visual coverage. Preprocessed SVIs served as inputs for semantic segmentation 

using the DeepLab ResNet101 model, pre-trained on the ADE20K dataset, and 

implemented with the GluonCV framework. The model performs pixel-level 

classification, automatically labeling features such as buildings, roads, trees, sky, and 

sidewalks. Post-processing involved computing pixel-wise class distributions, which 

were normalized and stored as numerical attributes in a structured analytical dataset. 

The tools used at this stage included GluonCV for model implementation, Python 

(NumPy, Pandas, Matplotlib) for post-processing and visualization, and QGIS for 

spatial alignment. These semantic attributes form the basis for constructing the 

Integrated Visual Walkability Index (IVW) and its sub-indicators, linking visual 

environmental composition with geospatial analysis. 

3.3 System Architecture 

The system architecture integrates geospatial data processing, machine learning, and 

quantitative analysis into a unified framework for urban environmental evaluation. This 

framework ensures that image acquisition, preprocessing, and semantic segmentation 

are aligned and reproducible. It also establishes a workflow for deriving measurable 

indicators from complex visual data, allowing rigorous assessment of walkability and 

environmental quality. Figure 4 illustrates the systematic analytical workflow integrating 

geospatial data processing, semantic segmentation, and quantitative spatial analysis. 

The process begins with downloading the location file for the study area, extracting the 

area of interest in QGIS, and generating 40-meter interval sampling points. Using the 

GSV API, panoramic images were retrieved based on latitude and longitude 

coordinates, and then processed through the DeepLab ResNet101 semantic 

segmentation model to classify pixels into urban features, including buildings, roads, 

trees, sky, and walkways. This allowed for the precise extraction of visual attributes, 

including greenery coverage, sky openness, pavement visibility, and street enclosure, 

essential for evaluating urban form and environmental quality. From these segmented 

outputs, four sub-indicators were computed: Psychological Greenery (G-level), Visual 

Crowdedness (C-level), Outdoor Enclosure (S-level), and Visual Pavement (D-level). 

These were aggregated into the Integrated Visual Walkability Index (IVW), reflecting 

the overall environmental quality and pedestrian experience. The IVW is further 

decomposed into three dimensions: Comfort (greenery and sky visibility), Safety (open 

space and unobstructed visibility), and Convenience (accessibility and spatial 

continuity). Spatial visualization using QGIS and Python tools (Matplotlib, Seaborn) 

produced maps depicting walkability across Dongdaemun. This structured and 

reproducible workflow integrates geospatial data processing, machine learning–based 

segmentation, and quantitative analysis within a coherent methodological framework. 
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Figure 4: Workflow of the Data Processing and Analysis for the Integrated Visual Walkability Index 

(IVW) 

3.4 Semantic Segmentation and Feature Extraction 

Semantic segmentation and feature extraction convert visual information into 

structured, interpretable data, enabling quantitative evaluation of urban environmental 

quality. Accurate segmentation ensures that pixel-level measurements of buildings, 

roads, greenery, and other elements are reliable. This stage bridges the machine 

learning outputs with geospatial analysis, forming the foundation for deriving 

environmental indicators that inform the IVW. 
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Figure 5 shows a representative segmented output generated using the ADE20K 

dataset. Each object and surface—including buildings, trees, sky, roads, sidewalks, 

and other elements—is color-coded according to its semantic label. The legend 

associates each hue with its corresponding feature for intuitive interpretation. The 

segmentation demonstrates the model’s precision in differentiating built and natural 

elements, revealing spatial arrangements and proportional dominance of urban 

features. The derived pixel-level data are used to compute sub-indicators for comfort, 

safety, and convenience, forming the foundation of the IVW. By converting visual 

information into structured numerical data, this step effectively links machine learning 

outputs with geospatial analysis, enabling detailed evaluation of environmental quality 

and walkability in urban areas. 

Figure 5: Segmented Image and Ade20k Color Label Visualization 

This visualization demonstrates the model’s capability to accurately differentiate 

between built and natural elements, highlighting the spatial arrangement and relative 

dominance of urban features. The precise separation of surfaces such as walls, roads, 

trees, and sky ensure the reliability of subsequent quantitative pixel-level analyses, 

which are used to compute the sub-indicators for comfort, convenience, and safety. By 

converting visual information into structured semantic data, this process establishes a 

solid foundation for integrating machine learning outputs into the broader analytical 

framework for evaluating urban environmental quality and walkability. 

4. Results 

This study provides a detailed evaluation of environmental attributes through semantic 

segmentation analysis, offering a comprehensive understanding of the urban 

landscape in the Dongdaemun area of Seoul, South Korea. During the segmentation 

process, the model assigned specific class labels to individual pixels, enabling 

semantic identification of every element within each image. This pixel-level 

classification allowed the systematic compilation of pixel distribution data, which 
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served as the foundation for subsequent quantitative analyses. A structured Pandas 

DataFrame was developed to store the segmented class distributions, representing 

the proportional ratio of pixels assigned to each class relative to the total image size. 

These normalized values were essential for examining the spatial composition and 

visual characteristics of the urban environment. 

The Integrated Visual Walkability Index (IVW) was calculated using RGB 

attributes extracted from the segmentation results through a custom Python program. 

Four sub-indicators—Psychological Greenery (G-level), Visual Crowdedness (C-

level), Outdoor Enclosure (S-level), and Visual Pavement (D-level)—were measured 

for each street segment by averaging the coverage of street features across six vision 

boxes. Each sub-indicator was categorized into five levels, where higher levels 

represented more favorable environmental conditions. The integrated IVW values 

ranged from 20 to 200, reflecting the overall degree of pedestrian comfort, safety, and 

accessibility. 

The Outdoor Enclosure score captured the degree of spatial confinement created 

by vertical structures, while the IVW index integrated the combined effects of greenery, 

pavement-to-street ratio, obstacle density, and enclosure to provide a holistic measure 

of walkability. Safety was evaluated based on obstacle-related features such as 

vehicles and pedestrians, which may restrict movement. A quantile-based scoring 

approach enabled detailed analysis across multiple zones within Dongdaemun, 

revealing spatial variations in comfort, convenience, and safety. Each location was 

evaluated to produce a total score integrating the three main indicators—comfort, 

convenience, and safety. Higher scores indicated more pedestrian-friendly and 

environmentally favorable conditions, while lower scores highlighted areas with limited 

accessibility or environmental challenges. The comfort score was derived from sky and 

greenery proportions, representing openness and natural visibility. Convenience 

incorporated crowd density, Outdoor Enclosure, and IVW measurements, reflecting 

accessibility and spatial continuity. Safety was assessed by obstacle density, 

identifying locations prone to congestion. The total score provided a comprehensive 

measure of livability and walkability, combining multiple environmental variables that 

influence pedestrian experience. 

4.1 Segmentation Class Distribution 

Figure 6 illustrates the relative sizes of the segmentation classes extracted from 

the analyzed street-view images. Each color segment corresponds to a semantic class, 

with proportions indicating the pixel coverage within the dataset. The dominant 

categories are ‘road, route’ (28.1%) and ‘ceiling’ (25.6%), showing that road surfaces 

and open-sky elements occupy the largest portions of the visual scenes. These 

features reflect the openness and exposure characteristic of Dongdaemun’s street 

environment. Other major components include ‘seat’ (10.1%) and ‘wall’ (9.9%), 

defining pedestrian and vehicular boundaries. ‘Floor, flooring’ (5.9%) and ‘building, 

edifice’ (5.8%) further describe the dense urban morphology, while smaller elements—

such as ‘windowpane, window’ (3.9%), ‘bag’ (3.3%), ‘awning, sunshade, sunblind’ 
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(2.8%), and ‘signboard, sign’ (2.2%)—represent commercial and human-activity 

features essential to streetscape characterization. These segmentation outcomes 

provide the foundational dataset for analyzing comfort, convenience, and safety 

indicators. The proportional pixel ratios were aggregated and reclassified into thematic 

variables, ‘greenery’, ‘sky’, ‘pavement’, and ‘street’—forming the basis for computing 

the Integrated Visual Walkability Index (IVW) and its sub-indicators. 

Figure 6: Relative Sizes of Segmentation Classes  

 

4.2 IVW Indicators and Formula 

Table 1 summarizes the indicators, their definitions, formulas, and explanations used 

in calculating the IVW. The IVW integrates four primary sub-indicators—Psychological 

Greenery (G), Visual Crowdedness (C), Outdoor Enclosure (S), and Visual Pavement 

(D)—each capturing a unique aspect of the visual and physical urban environment 

influencing pedestrian comfort, safety, and accessibility. The Psychological Greenery  

Table 1: Indicators And Definition, Formula, and Explanation (Zhou et al. 2019) 
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(G) indicator reflects how visible vegetation improves psychological well-being; Visual 

Crowdedness (C) measures the presence of obstacles affecting walkability; Outdoor 

Enclosure (S) expresses the balance between vertical and horizontal spatial features, 

revealing openness or confinement; and Visual Pavement (D) quantifies the proportion 

of walkable surfaces. 

The IVW is calculated using the following formula: 

IVW=(G-level+C-level+S-level+D-level)×5 (1) 

This composite score ranges from 20 to 200, where higher values indicate safer, 

more accessible, and visually comfortable pedestrian environments. Sub-indicator 

values were computed using RGB pixel segmentation in Python and aggregated by 

averaging across six vision boxes per street segment. Each indicator was normalized 

and categorized into quantile-based levels (G-, C-, S-, and D-level), facilitating detailed 

comparison between locations. The combination of these indicators establishes a 

quantitative and replicable framework for assessing visual walkability and 

environmental quality within dense urban areas. 

4.3 Spatial Distribution of Comfort, Convenience, and Safety 

 

Figure 7: Visualization of the Total Proportion of Comfort, Convenience, and Safety in The 

Dongdaemun Area 

Figures 7 and 8 illustrate the spatial distribution of the Integrated Visual 

Walkability Index (IVW) and its three sub-indicators—comfort, convenience, and 

safety—across the Dongdaemun area. The results reveal distinct spatial variations in 
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environmental quality and walkability. Figure 7 visualizes the total proportion of 

comfort, convenience, and safety scores derived from the IVW across the study area. 

The map clearly depicts variations in environmental quality, with color-coded points 

representing the aggregated scores at each street site. Streets with very low to low 

scores (2.7–9), shown in dark and light blue, are mainly concentrated along inner 

residential alleys and narrow passageways, reflecting areas with limited greenery, poor 

visibility, and higher obstacle density. In contrast, moderate to high values (9–44.5), 

indicated by green and orange points, are found along main streets and open public 

areas where pedestrian conditions are more favorable. A few segments display very 

high scores (44.5–251.8), marked in red, located near parks, public facilities, and wide 

sidewalks—signifying the most comfortable and safest walking environments.  

 
(a) 
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(b) 

 
(c) 

Figure 8: Comfort, Convenience, and Safety Results on the Analysis of Dondaemun Area 

These visual patterns demonstrate clear spatial differences in walkability within 

Dongdaemun. Major roads and open zones tend to provide better comfort, 

convenience, and safety, while inner streets and crowded alleys show lower scores. 

Such spatial insights are valuable for urban planners in identifying priority areas that 

require improvement through enhanced greenery, lighting, and pedestrian 

infrastructure. Figure 8(a) indicates that high comfort levels are concentrated along 

open streets and park surroundings with abundant vegetation and wide pedestrian 

paths, whereas low-comfort areas are mainly found in dense built-up zones. Figure 

8(b) reveals that convenience is higher along main transportation corridors and 

intersections where pedestrian access and infrastructure continuity are stronger, while 

less connected interior streets show low convenience levels. Figure 8(c) shows that 

safety is greatest along unobstructed and well-designed streets but decreases in areas 

with heavy traffic and pedestrian congestion. These spatial patterns emphasize the 

uneven distribution of walkability across Dongdaemun and the importance of targeted 

improvements—such as adding greenery, expanding sidewalks, and enhancing 

lighting—to achieve a safer, more comfortable, and accessible urban environment. 
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4.4 Feature-Specific Spatial Indicators 

 

(a) 

 

(b) 
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(d) 
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(e) 

 

(f) 
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(g) 

 

(h) 

Figure 9: Outdoor Enclosure, Street, Walkability, Sky, Obstacles, Crowd Density, Pavement, 

Greenery, Proportion of Dongdaemun Area 
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Figure 9(a) illustrates the Outdoor Enclosure, showing that higher enclosure 

values occur along major roads and building corridors where structural walls define the 

pedestrian space, while lower values appear near open areas and parks, offering 

greater visual openness. Figure 9(b) presents the Street feature, highlighting that high 

street proportions align with primary circulation routes and intersections, reflecting 

strong connectivity and accessibility within the urban network. Figure 9(c) displays 

Walkability, indicating that high walkability levels are concentrated along main streets 

and open spaces, where pedestrian conditions and accessibility are more favorable. 

Low walkability zones are clustered in inner alleys with narrow paths and limited 

vegetation. Figure 9(d) shows the Sky proportion, where high values correspond to 

open spaces and intersections with clear vertical visibility, while low ratios are found in 

dense built-up environments. 

Figure 9(e) represents the Obstacle distribution, identifying areas with varying 

levels of potential pedestrian obstruction. High obstacle density occurs near crowded 

or traffic-heavy zones, while low values correspond to open and safer walking areas. 

Figure 9(f) depicts Crowd Density, revealing high pedestrian concentrations around 

transportation hubs and commercial streets, and lower densities in residential or park-

side streets. Figure 9(g) illustrates Pavement coverage, with high values indicating 

well-maintained, wide sidewalks, and low values observed in narrow or poorly 

developed street segments. Figure 9(h) visualizes Greenery, where the highest levels 

are observed around parks, open green corridors, and public spaces, while built-up 

commercial areas exhibit low greenery levels. These spatial patterns collectively 

highlight the interaction between built form, natural elements, and pedestrian 

infrastructure in determining the environmental quality and walkability of the 

Dongdaemun area. The integration of these indicators offers valuable insights for 

improving comfort, accessibility, and safety in urban planning and design. 

4.5 Model Accuracy and Validation 

To ensure the reliability of the semantic segmentation process, a validation test 

was conducted on a subset of randomly selected Google Street View images from the 

Dongdaemun dataset. Although the DeepLab ResNet101 model was pre-trained on 

the ADE20K dataset, its performance was re-evaluated within the local urban context 

to verify segmentation consistency and class-level precision. Manual annotations were 

prepared for 50 representative street-view samples encompassing diverse urban 

settings, including residential alleys, open roads, green corridors, and commercial 

streets. Model performance was quantitatively assessed using three standard metrics: 

Pixel Accuracy (PA), Mean Class Accuracy (mCA), and Mean Intersection over Union 

(mIoU). 

• PA measures the overall proportion of correctly classified pixels in the entire 
image set. 

• mCA reflects the average classification accuracy across all semantic classes. 
• mIoU quantifies the mean overlap between the predicted and ground-truth 

regions for each class, providing a balanced measure of model precision. 
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Table 2: Model Performance Evaluation on the Dongdaemun Dataset 

Metric Definition Result 

Pixel Accuracy (PA) Ratio of correctly classified pixels to total pixels 0.88 

Mean Class Accuracy (mCA) Average per-class accuracy 0.82 

Mean Intersection over Union (mIoU) Average intersection-over-union across all classes 0.74 

Table 2 presents the quantitative evaluation of the DeepLab ResNet101 model’s 

performance on the Dongdaemun dataset using three standard semantic 

segmentation metrics: Pixel Accuracy (PA), Mean Class Accuracy (mCA), and Mean 

Intersection over Union (mIoU). The Pixel Accuracy of 0.88 indicates that 88% of all 

image pixels were correctly classified into their respective semantic categories, while 

the Mean Class Accuracy of 0.82 reflects consistent performance across different 

urban classes, including less represented features such as vegetation and sidewalks. 

The Mean Intersection over Union of 0.74 demonstrates the model’s strong 

segmentation precision, effectively distinguishing between overlapping regions like 

buildings, roads, sky, and greenery. Overall, these results confirm that the DeepLab 

ResNet101 model achieved satisfactory accuracy even in complex urban scenes. 

Minor performance reductions observed in narrow pedestrian alleys and shaded 

regions were primarily due to visual overlaps between walls and pavements. 

Nonetheless, the model’s segmentation accuracy was sufficient to extract reliable 

environmental sub-indicators for computing the Integrated Visual Walkability (IVW) 

index, thereby ensuring the robustness and reliability of subsequent spatial and 

environmental analyses. 

4.6 Visual Validation and Reliability 

Visual inspection confirmed that thematic maps produced by the model closely 

aligned with real-world street conditions. High greenery and sky ratios corresponded 

to open spaces, while obstacle and crowd density aligned with commercial and transit 

areas. No random artifacts or irregular patterns were observed, demonstrating spatial 

coherence and reliable boundary delineation. These outcomes confirm the robustness 

of the segmentation framework and support the use of derived indicators for evaluating 

comfort, convenience, and safety. 

5. Discussion 

The results highlight significant spatial variation in walkability across Dongdaemun. 

High walkability areas were concentrated along major streets, public open spaces, and 

park surroundings, where greenery, sky visibility, and pedestrian-friendly infrastructure 

improved comfort and accessibility. Conversely, narrow alleys and dense commercial 

corridors exhibited low walkability due to limited openness, higher obstacle density, 

and constrained pedestrian space.The strong model performance (PA = 0.88, mIoU = 

0.74) demonstrates that DeepLab ResNet101 effectively captured complex urban 

structures, enabling reliable extraction of environmental indicators. Although minor 

misclassifications occurred in visually congested areas, these had minimal influence 
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on aggregated IVW outcomes.The observed spatial patterns align with existing 

literature emphasizing the importance of greenery, openness, and unobstructed 

pedestrian routes for enhancing urban walkability. The IVW framework developed in 

this study provides a scalable and reproducible method for evaluating visual 

walkability. These insights are valuable for urban planners seeking to improve 

pedestrian environments through targeted interventions such as increasing vegetation, 

widening sidewalks, reducing obstacles, and enhancing lighting. 

6. Conclusion 

This study aimed to assess the urban environmental quality of the Dongdaemun area 

through geospatial semantic segmentation, addressing the research problem of how 

street-level visual data can be translated into meaningful indicators for urban planning 

and environmental assessment. By applying a deep learning–based DeepLab 

ResNet101 model to Google Street View imagery, key visual elements such as 

greenery, sky openness, pedestrian pathways, and road surfaces were quantified to 

derive composite measures of comfort, safety, and convenience, culminating in the 

Integrated Visual Walkability (IVW) index. The findings demonstrate that semantic 

segmentation enables pixel-level understanding of environmental patterns, offering 

valuable insights for evidence-based decision-making, policy development, and 

sustainable urban design. The approach effectively bridges visual data analysis and 

spatial planning, identifying specific locations where improvements—such as 

enhanced vegetation, lighting, or pedestrian infrastructure—can improve livability. 

However, the study is limited by its reliance on Google Street View imagery, which may 

not fully capture temporal variations or areas with incomplete coverage. Future 

research should incorporate temporal datasets, expand to broader metropolitan areas, 

and enhance segmentation accuracy through multi-modal or higher-resolution imagery 

to strengthen applicability and generalizability. 
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