IJSA (2025), Vol. 9, No. 2, 194-217 Indonesian Journal of Statistics and Its Applications
DOI: https://doi.org/10.29244/ijsa.v9i2p194-217 Available at https://journal-stats.ipb.ac.id/index.php/ijsa
e-ISSN: 2599-0802

Deep Learning—Based Semantic Segmentation for Evaluating
Urban Environmental Quality and Walkability in Dongdaemun

Su Myat Thwin

Department of Computer Studies, University of Yangon, Myanmar
*corresponding author: drsumyatthwin@gmail.com

Copyright © 2025 Su Myat Thwin. This is an open-access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Abstract

This study evaluates environmental quality and urban walkability in the
Dongdaemun district through geospatial semantic segmentation of street-view imagery.
A DeeplLab ResNetl101 model, pre-trained on the ADE20K dataset and implemented
using the GluonCV framework, was applied to Google Street View images collected at
40-meter intervals in four cardinal directions. Pixel-level segmentation was used to
quantify key environmental features such as greenery, sky visibility, pavement, and road
surfaces. Based on these visual attributes, composite indicators representing comfort,
convenience, and safety were derived, leading to the calculation of an Integrated Visual
Walkability index. The results reveal clear spatial variations in walkability across the
study area, highlighting areas with favorable pedestrian environments and zones
requiring improvement. Although the analysis is constrained by image quality and spatial
coverage, the findings demonstrate the effectiveness of deep learning—based semantic
segmentation for large-scale environmental assessment. This approach provides a
scalable and data-driven framework to support evidence-based urban planning and
sustainable city development.
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1. Introduction

Walkability is widely recognized as an important factor influencing physical activity,
public health, and overall urban livability. Despite the well-documented health benefits
of regular physical activity, many adults in developed countries still do not engage in
sufficient physical activity (Dyck et al. 2011). To promote active living, it is important to
understand the multidimensional factors that shape walking behavior. Recent studies
have shown that objectively measured neighborhood attributes—such as residential
density, street connectivity, and land use mix—are strongly associated with walking
levels and broader physical activity patterns (Handy et al. 2002; Saelens et al. 2003;
Owen et al. 2007; Sallis et al. 2009; Dyck et al. 2011). Adults living in environments
with well-connected streets, diverse land uses, and higher residential density tend to
exhibit more pedestrian activity than those in low-walkable neighborhoods.
Consequently, researchers and urban planners emphasize the development of highly
walkable environments to support physical activity and improve public health
outcomes. In addition to physical characteristics, neighborhood perception also affects
residential satisfaction and overall well-being. Prior research indicates that
neighborhood satisfaction is associated with happiness, mental health, and quality of
life (Michael et al. 2006; Van Dyck et al. 2010). Furthermore, studies have found that
social and leisure activities within neighborhoods—such as participation in local events
or informal social interactions—can positively influence neighborhood satisfaction
(Wilson et al. 2004; Forum 2007). These findings highlight the importance of
considering both physical and perceptual aspects when evaluating urban
environments.

Traditional assessments of walkability have relied on field surveys, manual
audits, or subjective perception questionnaires, which are often time-consuming,
resource-intensive, and limited in spatial coverage. Recent advances in computer
vision have enabled automated and scalable analysis of the urban visual environment
using street-view imagery. In particular, deep learning—based semantic segmentation
allows pixel-level identification of environmental components such as buildings,
vegetation, sky openness, pavement surfaces, and physical obstacles. These visual
characteristics directly influence pedestrian comfort, safety, and spatial experience,
making them valuable indicators for evaluating walkability. In this study, a DeepLab
semantic segmentation model is applied to Google Street View images to quantify key
urban environmental features throughout the Dongdaemun district of Seoul. From the
extracted visual attributes, composite indicators representing comfort, convenience,
and safety are derived and integrated into an Integrated Visual Walkability (IVW) index.
The resulting spatial evaluation provides detailed insights into environmental quality
and walkability patterns, offering practical guidance for urban planning, environmental
management, and policy decision-making.
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2. Related Work

Recent research has increasingly leveraged street view imagery (SVI) and deep
learning—based semantic segmentation to assess urban environments and walkability,
moving beyond traditional surveys and site audits. These methods allow scalable,
objective extraction of visual features that influence pedestrian experience and
walkability patterns. For instance, Choi et al. (2024) applied semantic segmentation to
Google Street View panoramas to model urban visual composition, defining typologies
such as greenness, openness, and enclosure based on pixel-level imagery data.
Ghose and Rai (2025) demonstrated a GeoAl approach for integrated visual walkability
assessment, quantifying greenery, openness, pavement, and crowdedness across
Kolkata, revealing significant intra-city variations in pedestrian infrastructure. Yu (2024)
employed deep learning to evaluate temporal changes in walkability indicators (e.g.,
greenery, sidewalk coverage) in downtown Orlando, illustrating how visual
characteristics evolve with urban development. Similarly, Smith et al. (2025) integrated
objective street-level features with subjective assessments using deep CNNs to
capture safety, aesthetics, and accessibility for walkability evaluation.

Several studies focused on perceptual aspects of walkability. Choi and Kang
(2025) modeled and explained perceived walkability in urban environments using
semantic segmentation and explainable Al, extracting fine-grained visual features to
identify which elements most strongly influence pedestrian judgments. Yang et al.
(2025) developed a framework combining GeoAl and human perceptions to estimate
walkability scores, highlighting the importance of integrating subjective perceptions
with objective urban measures. Harmonizing semantic features with spatial predictors
has been shown to improve urban visual composition modeling and walkability
assessment (Pradana et al. 2025), while Li et al. (2025) demonstrated that
spatiotemporal contrast learning can enhance street-view representation for urban
analysis. Generative Al approaches, such as SAGAI (Perez and Fusco 2025), have
also emerged to automate the mapping of streetscape elements into structured
walkability indicators. Automated sidewalk mapping and urban feature extraction have
further enhanced neighborhood-scale walkability analysis. Hamim et al. (2024)
mapped sidewalks using street view imagery, while Hwang et al. (2024) applied
regression models to spatial image features to predict walkability levels. Mushkani and
Koseki (2026) proposed a participatory Al framework that integrates resident feedback
with machine learning for inclusive walkability assessment. Zhang et al. (2025) used
GeoAl-based semantic segmentation to quantify greenery and walkability metrics at
the city scale. Huang et al. (2024) integrated streetscape images, machine learning,
and space syntax to enhance walkability analysis in Seoul, demonstrating practical
application in a dense urban context.

Recent studies have also explored dynamic and temporal dimensions. Alvarez
and Garcia (2025) evaluated walkability using objective street-view measures with
regression models, while Nguyen et al. (2025) quantified visual indicators for
walkability through semantic segmentation. Brown and Green (2025) assessed visual
crowdedness using automated street-level image analysis, highlighting areas of high
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pedestrian obstruction. Wilson and Taylor (2025) analyzed sidewalks and greenery to
assess pedestrian safety and comfort, and Chen et al. (2025) applied deep learning
and street-view analytics to measure perceived walkability in dense urban areas,
emphasizing both physical and perceptual components. Collectively, these advances
demonstrate the growing integration of Al, deep learning, and semantic segmentation
in walkability research. However, relatively few studies have applied pixel-level
semantic segmentation specifically to Seoul’s urban environment. This motivates the
present study, which applies these methods to the Dongdaemun district to generate
detailed insights into urban environmental quality and walkability patterns.

3. Methodology

This study adopts a systematic methodology grounded in recent advances in
geospatial and urban analytics (Zhang et al. 2019), Google Street View—based
environmental data extraction and sampling strategies (Zhang et al. 2019; Liu et al.
2020), and deep learning—based semantic segmentation techniques for urban feature
analysis (Cheng et al. 2022; Minaee et al. 2022) to evaluate urban environmental
characteristics and walkability in the Dongdaemun district of Seoul, South Korea. The
methodology is designed to ensure rigor, reproducibility, and spatial
representativeness. It is divided into four main components: data collection and
preprocessing, multi-directional sampling and data structuring, system architecture,
and semantic segmentation with feature extraction, each contributing to building a
structured and interpretable dataset for urban analysis.

3.1 Data Collection and Preprocessing

The first stage of this study focuses on acquiring high-quality geospatial and street-
level imagery, which forms the basis for all subsequent analyses. Accurate data
collection is critical to ensure the reliability of semantic segmentation and the validity
of derived indicators. This phase also establishes a reproducible spatial framework that
allows consistent alignment between image pixels and real-world locations, a key
factor in quantitative urban assessment. The research begins with acquiring high-
resolution geospatial and satellite imagery of the study area. The area was delineated
using QGIS, where sampling points were systematically generated at 40-meter
intervals to maintain uniform spatial coverage. This spatial framework ensures precise
alignment between image pixels and real-world locations, supporting reproducibility
and consistency in subsequent analyses.

Figure 1 illustrates the spatial extent of the study area, showing the distribution
of sampling points across Seodaemun-gu (yellow) and Dongdaemun (blue), with
Dongdaemun serving as the primary focus for detailed geospatial analysis. The
systematic placement of sampling points ensures uniform spatial coverage during data
acquisition and processing. Each coordinate point was programmatically linked to the
Google Street View (GSV) API
(https://developers.google.com/maps/documentation/streetview), enabling automated
retrieval of panoramic street-view images. To capture a complete 360° view of each
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location, four images were obtained per point at 0°, 90°, 180°, and 270°. From 620
sampling points, a total of 2,480 images were generated, of which 2,370 high-quality
images were retained after removing blurred, distorted, or obstructed frames.

Preprocessing steps included resizing images to 512x512 pixels, color
normalization (RGB values scaled to [0,1]), cropping to remove redundant upper and
lower frame regions, and quality control to eliminate images with obstructions such as
vehicles or construction barriers. The processed images were systematically renamed
according to coordinate ID and orientation (e.g., P123_90.jpg) and compiled into a
Pandas DataFrame linking each image to its geographic coordinates and viewing
direction. These procedures establish a reliable foundation for subsequent semantic
segmentation and quantitative urban analysis.
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Figure 1: Extract The Study Area from The Map Using QGIS

3.2 Multi-Directional Sampling and Data Structuring

To fully capture the urban visual environment, a multi-directional sampling strategy was
adopted, providing a comprehensive 360° perspective for each location. This approach
ensures that key environmental attributes such as greenery, sky openness, and
building enclosure are accurately represented. Systematically structuring these
images with spatial metadata enables reproducibility and integration into machine
learning pipelines for subsequent semantic analysis.
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Figure 2: Road Network and Sampling Points of Dongdaemun, Seoul, South Korea (40 m Intervals)

Figure 2 illustrates the spatial configuration of the road network and the
systematically distributed 40-meter sampling points within the Dongdaemun district.
Figure 2 illustrates the spatial configuration of the road network and systematically
distributed sampling points within Dongdaemun. Each point represents a fixed
geographic coordinate and forms the basis of the study’s conceptual framework, linking
geospatial sampling to semantic segmentation for urban environmental assessment.
The multi-directional sampling strategy ensures that each location captures the
surrounding environment comprehensively, including greenery coverage, sky
openness, pedestrian infrastructure, and building enclosure, which are key indicators
for evaluating urban livability and walkability. The collected images provide a rich visual
dataset, supporting a robust and representative analysis of street-level environmental
conditions.
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Figure 3: Example of Street View Image Samples (SVIs) at Different Viewing Angles. Each image
represents the same location, captured from four viewing directions to ensure comprehensive visual
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coverage. The numbers indicate the data collection angles from the same point: 0° (front view), 90°
(right view), 180° (back view), and 270° (left view)

Figure 3 presents representative SVIs captured at 0°, 90°, 180°, and 270° from
the same location, illustrating the multi-directional sampling approach for complete
360° visual coverage. Preprocessed SVIs served as inputs for semantic segmentation
using the DeepLab ResNetl01l model, pre-trained on the ADE20K dataset, and
implemented with the GluonCV framework. The model performs pixel-level
classification, automatically labeling features such as buildings, roads, trees, sky, and
sidewalks. Post-processing involved computing pixel-wise class distributions, which
were normalized and stored as numerical attributes in a structured analytical dataset.
The tools used at this stage included GluonCV for model implementation, Python
(NumPy, Pandas, Matplotlib) for post-processing and visualization, and QGIS for
spatial alignment. These semantic attributes form the basis for constructing the
Integrated Visual Walkability Index (IVW) and its sub-indicators, linking visual
environmental composition with geospatial analysis.

3.3 System Architecture

The system architecture integrates geospatial data processing, machine learning, and
guantitative analysis into a unified framework for urban environmental evaluation. This
framework ensures that image acquisition, preprocessing, and semantic segmentation
are aligned and reproducible. It also establishes a workflow for deriving measurable
indicators from complex visual data, allowing rigorous assessment of walkability and
environmental quality. Figure 4 illustrates the systematic analytical workflow integrating
geospatial data processing, semantic segmentation, and quantitative spatial analysis.
The process begins with downloading the location file for the study area, extracting the
area of interest in QGIS, and generating 40-meter interval sampling points. Using the
GSV API, panoramic images were retrieved based on latitude and longitude
coordinates, and then processed through the DeepLab ResNetl01l semantic
segmentation model to classify pixels into urban features, including buildings, roads,
trees, sky, and walkways. This allowed for the precise extraction of visual attributes,
including greenery coverage, sky openness, pavement visibility, and street enclosure,
essential for evaluating urban form and environmental quality. From these segmented
outputs, four sub-indicators were computed: Psychological Greenery (G-level), Visual
Crowdedness (C-level), Outdoor Enclosure (S-level), and Visual Pavement (D-level).
These were aggregated into the Integrated Visual Walkability Index (IVW), reflecting
the overall environmental quality and pedestrian experience. The IVW is further
decomposed into three dimensions: Comfort (greenery and sky visibility), Safety (open
space and unobstructed visibility), and Convenience (accessibility and spatial
continuity). Spatial visualization using QGIS and Python tools (Matplotlib, Seaborn)
produced maps depicting walkability across Dongdaemun. This structured and
reproducible workflow integrates geospatial data processing, machine learning—based
segmentation, and quantitative analysis within a coherent methodological framework.
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Figure 4: Workflow of the Data Processing and Analysis for the Integrated Visual Walkability Index
(Ivw)

3.4 Semantic Segmentation and Feature Extraction

Semantic segmentation and feature extraction convert visual information into
structured, interpretable data, enabling quantitative evaluation of urban environmental
quality. Accurate segmentation ensures that pixel-level measurements of buildings,
roads, greenery, and other elements are reliable. This stage bridges the machine
learning outputs with geospatial analysis, forming the foundation for deriving
environmental indicators that inform the IVW.
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Figure 5 shows a representative segmented output generated using the ADE20K
dataset. Each object and surface—including buildings, trees, sky, roads, sidewalks,
and other elements—is color-coded according to its semantic label. The legend
associates each hue with its corresponding feature for intuitive interpretation. The
segmentation demonstrates the model’s precision in differentiating built and natural
elements, revealing spatial arrangements and proportional dominance of urban
features. The derived pixel-level data are used to compute sub-indicators for comfort,
safety, and convenience, forming the foundation of the IVW. By converting visual
information into structured numerical data, this step effectively links machine learning
outputs with geospatial analysis, enabling detailed evaluation of environmental quality
and walkability in urban areas.

Segemented image
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Figure 5: Segmented Image and Ade20k Color Label Visualization

This visualization demonstrates the model’s capability to accurately differentiate
between built and natural elements, highlighting the spatial arrangement and relative
dominance of urban features. The precise separation of surfaces such as walls, roads,
trees, and sky ensure the reliability of subsequent quantitative pixel-level analyses,
which are used to compute the sub-indicators for comfort, convenience, and safety. By
converting visual information into structured semantic data, this process establishes a
solid foundation for integrating machine learning outputs into the broader analytical
framework for evaluating urban environmental quality and walkability.

4. Results

This study provides a detailed evaluation of environmental attributes through semantic
segmentation analysis, offering a comprehensive understanding of the urban
landscape in the Dongdaemun area of Seoul, South Korea. During the segmentation
process, the model assigned specific class labels to individual pixels, enabling
semantic identification of every element within each image. This pixel-level
classification allowed the systematic compilation of pixel distribution data, which
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served as the foundation for subsequent quantitative analyses. A structured Pandas
DataFrame was developed to store the segmented class distributions, representing
the proportional ratio of pixels assigned to each class relative to the total image size.
These normalized values were essential for examining the spatial composition and
visual characteristics of the urban environment.

The Integrated Visual Walkability Index (IVW) was calculated using RGB
attributes extracted from the segmentation results through a custom Python program.
Four sub-indicators—Psychological Greenery (G-level), Visual Crowdedness (C-
level), Outdoor Enclosure (S-level), and Visual Pavement (D-level)}—were measured
for each street segment by averaging the coverage of street features across six vision
boxes. Each sub-indicator was categorized into five levels, where higher levels
represented more favorable environmental conditions. The integrated IVW values
ranged from 20 to 200, reflecting the overall degree of pedestrian comfort, safety, and
accessibility.

The Outdoor Enclosure score captured the degree of spatial confinement created
by vertical structures, while the IVW index integrated the combined effects of greenery,
pavement-to-street ratio, obstacle density, and enclosure to provide a holistic measure
of walkability. Safety was evaluated based on obstacle-related features such as
vehicles and pedestrians, which may restrict movement. A quantile-based scoring
approach enabled detailed analysis across multiple zones within Dongdaemun,
revealing spatial variations in comfort, convenience, and safety. Each location was
evaluated to produce a total score integrating the three main indicators—comfort,
convenience, and safety. Higher scores indicated more pedestrian-friendly and
environmentally favorable conditions, while lower scores highlighted areas with limited
accessibility or environmental challenges. The comfort score was derived from sky and
greenery proportions, representing openness and natural visibility. Convenience
incorporated crowd density, Outdoor Enclosure, and IVW measurements, reflecting
accessibility and spatial continuity. Safety was assessed by obstacle density,
identifying locations prone to congestion. The total score provided a comprehensive
measure of livability and walkability, combining multiple environmental variables that
influence pedestrian experience.

4.1 Segmentation Class Distribution

Figure 6 illustrates the relative sizes of the segmentation classes extracted from
the analyzed street-view images. Each color segment corresponds to a semantic class,
with proportions indicating the pixel coverage within the dataset. The dominant
categories are ‘road, route’ (28.1%) and ‘ceiling’ (25.6%), showing that road surfaces
and open-sky elements occupy the largest portions of the visual scenes. These
features reflect the openness and exposure characteristic of Dongdaemun’s street
environment. Other major components include ‘seat’ (10.1%) and ‘wall’ (9.9%),
defining pedestrian and vehicular boundaries. ‘Floor, flooring’ (5.9%) and ‘building,
edifice’ (5.8%) further describe the dense urban morphology, while smaller elements—
such as ‘windowpane, window’ (3.9%), ‘bag’ (3.3%), ‘awning, sunshade, sunblind’
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(2.8%), and ‘signboard, sign’ (2.2%)—represent commercial and human-activity
features essential to streetscape characterization. These segmentation outcomes
provide the foundational dataset for analyzing comfort, convenience, and safety
indicators. The proportional pixel ratios were aggregated and reclassified into thematic
variables, ‘greenery’, ‘sky’, ‘pavement’, and ‘street'—forming the basis for computing
the Integrated Visual Walkability Index (IVW) and its sub-indicators.

Relative Sizes of Segmentation Classes

Classes
road, route
ceiling
seat
wall
floar, flooring
building, edifice
windowpane, window
bag
awning, sunshade, sunblind
signboard, sign
person
trade name, brand name, marque
bus, coach, omnibus, passenger vehicle

Figure 6: Relative Sizes of Segmentation Classes

4.2 IVW Indicators and Formula

Table 1 summarizes the indicators, their definitions, formulas, and explanations used
in calculating the IVW. The IVW integrates four primary sub-indicators—Psychological
Greenery (G), Visual Crowdedness (C), Outdoor Enclosure (S), and Visual Pavement
(D)—each capturing a unique aspect of the visual and physical urban environment
influencing pedestrian comfort, safety, and accessibility. The Psychological Greenery

Table 1: Indicators And Definition, Formula, and Explanation (Zhou et al. 2019)

Indicators and their definition, formula and explanation.

Indicators Definition Formula Explanation

Psychological Greenery Extent to which the visibility of street (810 T, is the number of tree pixels; Sum is the total pixel
vegetation can influence pedestrian = esum number;
psychological feelings

Visual Crowdedness Extent to which the visibility of co (Z?C") C, is the number of obstacles pixels; Sum is the total pixel
obstacles can influence pedestrian L — number;
experiences

Outdoor Enclosure How the room-like outdoor space is X6 Bn+ X5 Tn By, is the number of building pixels; Ty, is the number of

. . . §=——=t =1 . s
(the ratio of vertical objects to  SFPn+ ToRnt X0Fn tree pixels; P, refers to the number of pavement pixels; R,
horizontal features) refers to the number of road pixels; F,, refers to the
number of fence pixels

Visual Pavement Psychological impacts of the _ Topne3fEn R, refers to the number of road pixels; P, refers to the
proportion of road and sideway on D= £0Rn number of pavement pixels; F,, refers to the number of
pedestrian experience fence pixels;

Integrated Visual Integrated Visual Walkability index IVW =(G-level + C-level + S-level + D-level)*5

Walkability (IVW)
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(G) indicator reflects how visible vegetation improves psychological well-being; Visual
Crowdedness (C) measures the presence of obstacles affecting walkability; Outdoor
Enclosure (S) expresses the balance between vertical and horizontal spatial features,
revealing openness or confinement; and Visual Pavement (D) quantifies the proportion
of walkable surfaces.

The IVW is calculated using the following formula:
IVW=(G-level+C-level+S-level+D-level)x5 (1)

This composite score ranges from 20 to 200, where higher values indicate safer,
more accessible, and visually comfortable pedestrian environments. Sub-indicator
values were computed using RGB pixel segmentation in Python and aggregated by
averaging across six vision boxes per street segment. Each indicator was normalized
and categorized into quantile-based levels (G-, C-, S-, and D-level), facilitating detailed
comparison between locations. The combination of these indicators establishes a
quantitative and replicable framework for assessing visual walkability and
environmental quality within dense urban areas.

4.3 Spatial Distribution of Comfort, Convenience, and Safety

% g

Comfort, Convenience and Safety ——
® 2.7-6.7 (Very Low)
® 6.7 -9 (Low)
9 - 16.9(Moderate)
» 16.9 - 44.5 (High)
® 44,5 - 251.8 (Very High)

Figure 7: Visualization of the Total Proportion of Comfort, Convenience, and Safety in The
Dongdaemun Area

Figures 7 and 8 illustrate the spatial distribution of the Integrated Visual
Walkability Index (IVW) and its three sub-indicators—comfort, convenience, and
safety—across the Dongdaemun area. The results reveal distinct spatial variations in



206 Thwin

environmental quality and walkability. Figure 7 visualizes the total proportion of
comfort, convenience, and safety scores derived from the IVW across the study area.
The map clearly depicts variations in environmental quality, with color-coded points
representing the aggregated scores at each street site. Streets with very low to low
scores (2.7-9), shown in dark and light blue, are mainly concentrated along inner
residential alleys and narrow passageways, reflecting areas with limited greenery, poor
visibility, and higher obstacle density. In contrast, moderate to high values (9—-44.5),
indicated by green and orange points, are found along main streets and open public
areas where pedestrian conditions are more favorable. A few segments display very
high scores (44.5-251.8), marked in red, located near parks, public facilities, and wide
sidewalks—signifying the most comfortable and safest walking environments.
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Figure 8: Comfort, Convenience, and Safety Results on the Analysis of Dondaemun Area

These visual patterns demonstrate clear spatial differences in walkability within
Dongdaemun. Major roads and open zones tend to provide better comfort,
convenience, and safety, while inner streets and crowded alleys show lower scores.
Such spatial insights are valuable for urban planners in identifying priority areas that
require improvement through enhanced greenery, lighting, and pedestrian
infrastructure. Figure 8(a) indicates that high comfort levels are concentrated along
open streets and park surroundings with abundant vegetation and wide pedestrian
paths, whereas low-comfort areas are mainly found in dense built-up zones. Figure
8(b) reveals that convenience is higher along main transportation corridors and
intersections where pedestrian access and infrastructure continuity are stronger, while
less connected interior streets show low convenience levels. Figure 8(c) shows that
safety is greatest along unobstructed and well-designed streets but decreases in areas
with heavy traffic and pedestrian congestion. These spatial patterns emphasize the
uneven distribution of walkability across Dongdaemun and the importance of targeted
improvements—such as adding greenery, expanding sidewalks, and enhancing
lighting—to achieve a safer, more comfortable, and accessible urban environment.
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4.4 Feature-Specific Spatial Indicators
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Figure 9(a) illustrates the Outdoor Enclosure, showing that higher enclosure
values occur along major roads and building corridors where structural walls define the
pedestrian space, while lower values appear near open areas and parks, offering
greater visual openness. Figure 9(b) presents the Street feature, highlighting that high
street proportions align with primary circulation routes and intersections, reflecting
strong connectivity and accessibility within the urban network. Figure 9(c) displays
Walkability, indicating that high walkability levels are concentrated along main streets
and open spaces, where pedestrian conditions and accessibility are more favorable.
Low walkability zones are clustered in inner alleys with narrow paths and limited
vegetation. Figure 9(d) shows the Sky proportion, where high values correspond to
open spaces and intersections with clear vertical visibility, while low ratios are found in
dense built-up environments.

Figure 9(e) represents the Obstacle distribution, identifying areas with varying
levels of potential pedestrian obstruction. High obstacle density occurs near crowded
or traffic-heavy zones, while low values correspond to open and safer walking areas.
Figure 9(f) depicts Crowd Density, revealing high pedestrian concentrations around
transportation hubs and commercial streets, and lower densities in residential or park-
side streets. Figure 9(g) illustrates Pavement coverage, with high values indicating
well-maintained, wide sidewalks, and low values observed in narrow or poorly
developed street segments. Figure 9(h) visualizes Greenery, where the highest levels
are observed around parks, open green corridors, and public spaces, while built-up
commercial areas exhibit low greenery levels. These spatial patterns collectively
highlight the interaction between built form, natural elements, and pedestrian
infrastructure in determining the environmental quality and walkability of the
Dongdaemun area. The integration of these indicators offers valuable insights for
improving comfort, accessibility, and safety in urban planning and design.

4.5 Model Accuracy and Validation

To ensure the reliability of the semantic segmentation process, a validation test
was conducted on a subset of randomly selected Google Street View images from the
Dongdaemun dataset. Although the DeepLab ResNet101 model was pre-trained on
the ADE20K dataset, its performance was re-evaluated within the local urban context
to verify segmentation consistency and class-level precision. Manual annotations were
prepared for 50 representative street-view samples encompassing diverse urban
settings, including residential alleys, open roads, green corridors, and commercial
streets. Model performance was quantitatively assessed using three standard metrics:
Pixel Accuracy (PA), Mean Class Accuracy (mCA), and Mean Intersection over Union
(mloU).

e PA measures the overall proportion of correctly classified pixels in the entire
image set.

¢ mMCA reflects the average classification accuracy across all semantic classes.

e mloU quantifies the mean overlap between the predicted and ground-truth
regions for each class, providing a balanced measure of model precision.



Indonesian Journal of Statistics and Its Applications. Vol 9 No 2 (2025), 194 - 217 213

Table 2: Model Performance Evaluation on the Dongdaemun Dataset

Metric Definition Result
Pixel Accuracy (PA) Ratio of correctly classified pixels to total pixels 0.88
Mean Class Accuracy (mCA) Average per-class accuracy 0.82

Mean Intersection over Union (mloU) Average intersection-over-union across all classes 0.74

Table 2 presents the quantitative evaluation of the DeepLab ResNet101 model’s
performance on the Dongdaemun dataset using three standard semantic
segmentation metrics: Pixel Accuracy (PA), Mean Class Accuracy (mCA), and Mean
Intersection over Union (mloU). The Pixel Accuracy of 0.88 indicates that 88% of all
image pixels were correctly classified into their respective semantic categories, while
the Mean Class Accuracy of 0.82 reflects consistent performance across different
urban classes, including less represented features such as vegetation and sidewalks.
The Mean Intersection over Union of 0.74 demonstrates the model’s strong
segmentation precision, effectively distinguishing between overlapping regions like
buildings, roads, sky, and greenery. Overall, these results confirm that the DeepLab
ResNet101 model achieved satisfactory accuracy even in complex urban scenes.
Minor performance reductions observed in narrow pedestrian alleys and shaded
regions were primarily due to visual overlaps between walls and pavements.
Nonetheless, the model’s segmentation accuracy was sufficient to extract reliable
environmental sub-indicators for computing the Integrated Visual Walkability (IVW)
index, thereby ensuring the robustness and reliability of subsequent spatial and
environmental analyses.

4.6 Visual Validation and Reliability

Visual inspection confirmed that thematic maps produced by the model closely
aligned with real-world street conditions. High greenery and sky ratios corresponded
to open spaces, while obstacle and crowd density aligned with commercial and transit
areas. No random artifacts or irregular patterns were observed, demonstrating spatial
coherence and reliable boundary delineation. These outcomes confirm the robustness
of the segmentation framework and support the use of derived indicators for evaluating
comfort, convenience, and safety.

5. Discussion

The results highlight significant spatial variation in walkability across Dongdaemun.
High walkability areas were concentrated along major streets, public open spaces, and
park surroundings, where greenery, sky visibility, and pedestrian-friendly infrastructure
improved comfort and accessibility. Conversely, narrow alleys and dense commercial
corridors exhibited low walkability due to limited openness, higher obstacle density,
and constrained pedestrian space.The strong model performance (PA = 0.88, mloU =
0.74) demonstrates that DeepLab ResNetl01 effectively captured complex urban
structures, enabling reliable extraction of environmental indicators. Although minor
misclassifications occurred in visually congested areas, these had minimal influence
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on aggregated IVW outcomes.The observed spatial patterns align with existing
literature emphasizing the importance of greenery, openness, and unobstructed
pedestrian routes for enhancing urban walkability. The IVW framework developed in
this study provides a scalable and reproducible method for evaluating visual
walkability. These insights are valuable for urban planners seeking to improve
pedestrian environments through targeted interventions such as increasing vegetation,
widening sidewalks, reducing obstacles, and enhancing lighting.

6. Conclusion

This study aimed to assess the urban environmental quality of the Dongdaemun area
through geospatial semantic segmentation, addressing the research problem of how
street-level visual data can be translated into meaningful indicators for urban planning
and environmental assessment. By applying a deep learning—based DeeplLab
ResNet101 model to Google Street View imagery, key visual elements such as
greenery, sky openness, pedestrian pathways, and road surfaces were quantified to
derive composite measures of comfort, safety, and convenience, culminating in the
Integrated Visual Walkability (IVW) index. The findings demonstrate that semantic
segmentation enables pixel-level understanding of environmental patterns, offering
valuable insights for evidence-based decision-making, policy development, and
sustainable urban design. The approach effectively bridges visual data analysis and
spatial planning, identifying specific locations where improvements—such as
enhanced vegetation, lighting, or pedestrian infrastructure—can improve livability.
However, the study is limited by its reliance on Google Street View imagery, which may
not fully capture temporal variations or areas with incomplete coverage. Future
research should incorporate temporal datasets, expand to broader metropolitan areas,
and enhance segmentation accuracy through multi-modal or higher-resolution imagery
to strengthen applicability and generalizability.
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