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Abstract

In this paper an exponentiated generalised Gompertz-Makeham distribution.
An exponentiated generalised family was introduced by Codeiro, et. al., which
allows greater flexibility in analysis of data. Some Mathematical and Statistical
properties including cumulative distribution function, hazard function and survival
function of the distribution are derived. The estimation of model parameters are
derived via maximum likelihood estimate method.
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1 Introduction

Recent developments known as generalised class of distributions aid construction of new
class of distribution by adding one or more shape parameters to the baseline distribution
which makes the new distribution more flexible at its tail region and these enable the
new distribution to capture data sets that the existing distribution may not be able to
capture. One of the new generated class of distributions is the exponentiated generalised
family of distribution.This study focuses on the exponentiated generalised
Gompertz-Makeham distribution, which is derived by raising the cumulative
distribution function (cdf) of an arbitrary parent distribution to an additional
parameter say α. Exponentiated class of distributions are also generalised distributions.
The use of exponentiated model started in the early 90s. Many authors used the
exponentiated class of distributions to derive a new class of distributions. Mudholkar &
Srivastava (1993) and also Ahuja & Nash (1967) used the exponentiated class of
distribution to derive exponentiated weibull distribution; Gupta & Kundu (2001)
generalised the Exponential distribution to obtain exponentiated exponential; Anake
et al. (2015); Lemonte & Cordeiro (2011) and Benkhelifa (2017) presented the
exponentiated generalized inverse gaussian, fractional beta-exponential and
Marshall-Olkin extended generalized Gompertz-Makeham distribution respectively. The
cdf of the exponentiated distribution is given accordingly as:

F (x) = (G(x))α (1)

and by differentiating equation (1) the pdf of the exponentiated distribution is obtained
as

f(x) = αg(x)(G(x))α−1, α > 0 (2)

If X is a random variable from the normal distribution then for α = 2 we have a case of
skew normal distribution.
The exponentiated generalised is an extension of the exponentiated class of distributions
El-Gohary et al. (2013); da Silva et al. (2015); Abu-Zinadah & Aloufi (2014); Jafari et al.
(2014) and Nadarajah & Kotz (2006). The cumulative density function is defined by
Cordeiro et al. (2013) as:

F (x) = [1− [1−G(x)]α]β (3)

and the pdf as,when the cdf is differentiated

f(x) = αβg(x)[1−G(x)]α−1[1− (1−G(x))α]β−1, α > 0, β > 0. (4)

if α = 1 the exponentiated generalised becomes the exponentiated class of
distribution. According to Cordeiro et al. (2013) the class of exponentiated generalised
shares an attractive physical interpretation whenever α and β are positive integers.
Considering a device made of independent components in a parallel system with each
component made of independent sub-components identically distributed according to
G(x) in a series system. The device fails if all components fail and each component fails
if any sub-component fails. Let Xj1..., Xjα denote the lifetimes of the sub-components
within the jth component, j = 1, ..., β with common cdf G(x). Let Xj denote the
lifetime of the jth component and let X denote the lifetime of the device. Therefore, the
cdf of X is

P (X ≥ x) = P (X1 ≤ x, ..., Xβ ≤ x) = P (X1 ≤ x)β

P (X ≥ x) = [1− P (X1 > x)]β = [1− P (X11 > x, ...X1α > x)]β
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P (X ≥ x) = [1− P (X11 > x)α]β = [1− (1− P (X11 > x)α]β (5)

The lifetime system of the device obeys the exponentiated generalised family.
The Gompertz-Makeham distribution is a combination of Gompertz and Makeham
functions.

Definition 1.1 A random variable X is Gompertz-Makeham Distributed, If its
cumulative Distribution function is given as;

F (x) = 1− e−λx−
σ
κ
(eκx−1), x > 0, λ > 0, σ > 0, κ > 0. (6)

The Gompertz-Makeham Distribution Probability Density Function is obtained by
differentiating equation (6);

f(x) = (σeκx + λ)e−λx−
σ
κ
(eκx−1), (7)

2 The Exponentiated Generalised Gompertz-Makeham
Distribution

Definition 2.1 The random variable X is said to have exponentiated generalized
Gompertz-Makeham Distribution (Ex-GGM) given:

F (x) = [1− [1−G(x)]α]β, α, β > x ≥ 0 (8)

and also the corresponding pdf is given as

f(x) = αβg(x)[1−G(x)]α−1[1− (1−G(x))α]β−1 (9)

so, the cdf of the corresponding proposed exponentiated generalized Gompertz-Makeham
is

F (x) = [1− [1− (1− e−λx−
σ
κ
(eκx−1))]α]β

for x, α, β, λ, σ, κ > 0 then

⇒ F (x) = [1− [e−λx−
σ
κ
(eκx−1)]α]β. (10)

The corresponding exponentiated generalised Gompertz-Makeham distribution pdf is
derived by substituting the g(x) and G(x) of the Gompertz-Makeham distribution

f(x, α, β, λ, σ, κ) = αβg(x)[1−G(x)]α−1[1− (1−G(x))α]β−1

f(x, α, β, λ, σ, κ) = αβ(σeκx + λ)e−λx−
σ
κ
(eκx−1)[e−λx−

σ
κ
(eκx−1)]α−1

×[1− (e−λx−
σ
κ
(eκx−1))α]β−1

(11)

⇒ f(x, α, β, λ, σ, κ) = αβ(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1 (12)
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2.1 Expansion of CDF and PDF of Ex-GGMD in Series

Following the work of Cordeiro et al. (2013), where he defined the exponentiated
generalised family expansion cdf and pdf as;

F (x) =
∞∑
j=0

wjG(x)j (13)

where the coefficients

wj(α, β) =
∞∑
k=0

(−1)j+kΓ(β + 1)Γ(αj + 1)

Γ(β − k + 1)Γ((α− 1)j + 1)k!j!
(14)

and the pdf series expansion

f(x) = αβg(x)
∞∑
j=0

tjG(x)j (15)

where the

tj(α, β) =
(−1)jΓ(β)

j!

∞∑
k=0

(−1)kΓ((k + 1)α)

Γ(β − k)Γ((k + 1)α− j)k!
(16)

f(x) =
∞∑
j=0

t∗jhj+1(x) (17)

where t∗j = αβ
tj

j + 1
and hj+1(x) = (j + 1)g(x)G(x)j

The general binomial theorem of any non-integer β , power series expansion given by ;

(1− z)β−1 =
∞∑
i=0

(
β − 1

i

)
(−1)izi =

∞∑
i=0

(−1)iΓ(β)

Γ(β − i)i!
zi (18)

|z| < 1 using the binomial expansion for a positive real power,

e−x =
∞∑
j=1

(−1)k
xk

k!
(19)

the expansion of the cdf and pdf Ex-GGM by Applying (18) in (11) then expansion of
Ex-GGM cdf becomes

F (x) =
∞∑
j=0

(−1)j
(
β

j

)
(e−λx−

σ
κ
(eκx−1))αj (20)

F (x) =
∞∑
k=0

∞∑
j=0

(−1)j+k
(
β

j

)
(αj)k(λx+ σ

κ
(eκx − 1))k

k!
(21)

and applying same method to Ex-GGM pdf, it becomes

f(x) = αβ
∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!
(σeκx + λ)(e−λx−

σ
κ
(eκx−1))α(j+1) (22)

f(x) = αβ
∞∑
k=0

∞∑
j=0

(−1)j+k
Γ(β)

Γ(β − j)j!
α(j + 1)

j!k!
(σeκx + λ)(λx+

σ

κ
(eκx − 1))α(j+1) (23)
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The plot for the pdf and cdf for equation 10 and 12 are shown in Figure 1 for various
shape parameters α and β. In the figure it was observed that as β > 1 the shape of the
graph form a unimodal shape or an inverted bathtub shape(bell shaped) else it is
monotonously decreasing in shape as 0 < β ≤ 1. It was also observed that the graph of
the exponentiated generalised Gompertz-Makeham is positively skewed and asymmetric
in nature with a heavy tail behaviour to the right,It is a heavy tailed distribution,
meaning that a random variable following the Ex-GGMD can have extreme values.

,

Figure 1: The plot for (a) PDF EX-GGM graph (b) CDF EX-GGM graph.

3 Some Statistical aspect of exponentiated generalized
Gompertz-Makeham Distribution

3.1 Quantile Function

The quantile function helps to generate the occurrences of distribution like the
median,lower quantile, upper quantile e.t.c. and also helps to obtain the measurement of
the skewness and kurtosis

F (x) = [1− [e−λx−
σ
κ
(eκx−1)]α]β

Let F (x) = U .The above equation can not be solved analytically but can be solved
numerically using Maple program

x =
σ

κλ
− 1

λ
ln(1− U

1

β )

1

α − 1

κ
W0[

σe

σ

κ (1− U
1

β )

−κ
αλ

λ
] (24)
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W0 is lambert function.
The analysis of the variability of the skewness and kurtosis on the shape parameters α and
β can be investigated based on quantile measures. Bowley skewness based on quantiles is

given by B =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
The Moors kurtosis based on octile is given by

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)

3.2 Mode

To obtain the mode of exponentiated generalised Gompertz-Makeham distribution, take
the logarithms of the pdf of the distribution. i.e.

logf(x) = n logα + n log β + log (σeκx + λ) + α(−λx− σ

κ
(eκx − 1))

+(β − 1) log [1− (e−λx−
σ
κ
(eκx−1))α]

(25)

differentiating the log f(x) with respect to x then
σκeκx

(λ+ σeκx)
− α(λ+ σeκx) +

α(β − 1)(λ+ σeκx)(e−λx−
σ
κ
(eκx−1))α

1− (e−λx−
σ
κ
(eκx−1))α

= 0

3.3 Moments

Let X be a random variable having Ex-GGMD. Then the rth mean is defined as

U r = E(xr) =
∫∞
y xrf(x)dx, y ≥ 0∫ ∞

y
xrf(x)δx = αβ

∫ ∞
y

xr(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1dx (26)

∫ ∞
y

xrf(x)dx =
∞∑
j=0

(−1)j
(
β − 1

j

)
αβ

∫ ∞
y

xr(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α(j+1)dx (27)

To solve the integral part∫ ∞
y

xr(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α(j+1)dx =

∫ ∞
y

xrσeκx[e−λx−
σ
κ
(eκx−1)]α(j+1)dx

+
∫ ∞
y

xrλ[e−λx−
σ
κ
(eκx−1)]α(j+1)dx

(28)

Then we have;

∫∞
y xr(σeκx + λ)[e−λx−

σ
κ
(eκx−1)]α(j+1)dx =

r

κr
∑∞
p=0

∑∞
i=1

(−1)i+1

i
(
κ

σ
)i+p

(
−λ
κ

)(α(j + 1))

p

∫∞σ
κ

(eκy−1)
zi+pe−zα(j+1)δz +

λr

σκr
∑∞
p=0

∑∞
i=1

(−1)i+1

i
(
κ

σ
)i+p

(
−λ
κ
− 1)(α(j + 1))

p

∫∞σ
κ

(eκy−1)
zi+pe−zα(j+1)δz

Γ(n) = xn−1e−xδx
Note; ∫ ∞

σ

κ
(eκy−1)

zi+pe−zα(j+1)δz =
1

α(j + 1)
Γ(i+ p+ 1,

σ

κ
(eκy − 1)) (29)
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3.4 Mean

The mean is defined as E(x) =
∫
x f(x)dx

when r=1 in equation 28 the mean is obtained as,

∫ ∞
y

xf(x)dx =
∞∑
j=0

(−1)j
(
β − 1

j

)
αβ

1

κ

∞∑
p=0

∞∑
i=1

(−1)i+1

i
(
κ

σ
)i+p

1

α(j + 1)
Γ(i+ p+ 1,

σ

κ
(eκy − 1))

{

(
−λ
κ

)(α(j + 1))

p

+
λ

σ

(
−λ
κ
− 1)(α(j + 1))

p

}
(30)

3.5 Variance

The variance of a distribution is defined as E(
∑
X2 −∑(X)2)

when r = 2 in equation 28 then

∫ ∞
y

x2f(x)dx =
∞∑
j=0

(−1)j
(
β − 1

j

)
αβ

2

κ2

∞∑
p=0

∞∑
i=1

(−1)i+1

i
(
κ

σ
)i+p

1

α(j + 1)
Γ(i+ p+ 1,

σ

κ
(eκy − 1))

{

(
−λ
κ

)(α(j + 1))

p

+
λ

σ

(
−λ
κ
− 1)(α(j + 1))

p

}
(31)

and E(x) is the mean obtained in equation 30

3.6 Moment generating function

E(eθx) =
∫ b
a e

θxf(x)δx

∫ b
a e

θxf(x)δx = αβ
∫ b
a e

θx(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1δx

∫ b

a
eθxf(x)δx = αβ

∞∑
j=0

(−1)j
(
β − 1

j

)∫ b

a
eθx(σeκx + λ)[e−λx−

σ
κ
(eκx−1)]α(j+1)δx (32)

to solve the integral part
Teimouri & Gupta (2012);∫ b
a e

θx(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α(j+1)δx =

σ
∫ b
a e

θxeκx[e−λx−
σ
κ
(eκx−1)]α(j+1)δx+ λ

∫ b
a e

θx[e−λx−
σ
κ
(eκx−1)]α(j+1)δx

Γ(n) = xn−1e−xδx

1

α(j + 1)
e
ασ
κ

(j+1)Γ(
θ − αλ(j + 1) + κ

κ
,
σ

κ
(eκb − eκa) +

λ

α(j + 1)σ
e
ασ
κ

(j+1)

Γ(
θ − αλ(j + 1)

κ
,
σ

κ
(eκb − eκa)

(33)

substitute equation 33 into 32,then you have the moment generating function of
Ex-GGM
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3.7 The Characteristic Function

The characteristic function is defined as

φxt = E(eitx) =
∫ b
a e

itxf(x)δx∫ b
a e

itxf(x)δx = αβ
∫ b
a e

itx(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1δx

∫ b

a
eitxf(x)δx = αβ

∞∑
j=0

(−1)j
(
β − 1

j

)∫ b

a
eitx(σeκx + λ)[e−λx−

σ
κ
(eκx−1)]α(j+1)δx (34)

1

α(j + 1)
e
ασ
κ

(j+1)Γ(
it− αλ(j + 1) + κ

κ
,
σ

κ
(eκb − eκa) +

λ

α(j + 1)σ
e
ασ
κ

(j+1)

Γ(
it− αλ(j + 1)

κ
,
σ

κ
(eκb − eκa)

(35)

substitute equation 35 into 34,then you have the Characteristic function of Ex-GGM

3.8 The cumulant generating function

it is defined by taking the Natural logarithm of the Moment generating function as;
Cxθ = logE(eθx)

Cxθ = logα + logβ + log(
∞∑
j=0

(−1)j
(
β − 1

j

)
(

1

α(j + 1)
e
ασ
κ

(j+1)

Γ(
θ − αλ(j + 1) + κ

κ
,
σ

κ
(eκb − eκa)) +

λ

α(j + 1)σ
e
ασ
κ

(j+1)Γ(
θ − αλ(j + 1)

κ
,
σ

κ
(eκb − eκa))))

(36)

3.9 Asymptotic Behaviour of Exponentiated Generalised
Gompertz-Makeham Distribution

We seek to investigate the behaviour of the proposed model as x→ 0 and x→∞.

f(x) = lim
x→0

αβ(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1 = 0 (37)

As

f(x) = lim
x→∞

αβ(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1 = 0 (38)

These results confirm further that the distribution has a mode

As
β = 1; in equation 38

f(x) = α(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α (39)
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f(x) = lim
x→0

α(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α

f(x) = α(σ + λ) (40)

α = 1; in equation 40

f(x) = (σ + λ) (41)

3.10 Survival function of exponentiated generalized Gompertz-Makeham
distribution

The survival function is defined as:

S(x) = 1− F (x) (42)

substitute the cdf of EX-GGM into equation 42

S(x) = 1− [1− (e−λx−
σ
κ
(eκx−1))α]β

As β = 1 then

S(x) = eα(−λx−
σ
κ
(eκx−1)) (43)

limx−→0 S(x) = 1 and limx−→∞ S(x) = 0
the range of survival function is 0 ≤ S(x) ≤ 1

3.11 Reversed hazard rate

The reversed hazard rate is defined as the ratio of the probability density function and
the corresponding cumulative distribution function.The reversed hazard rate is used for
examining the nature of the probability functions and application can be used in finance,
forensic science, in actuarial sciences, etc.

r(x) =
f(x)

F (x)
(44)

substituting the cdf and pdf of the exponentiated generalised Gompertz-Makeham in
equation 11 and 12 into eqaution 44,

r(x) =
αβ(σeκx + λ)[e−λx−

σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1

[1− [e−λx−
σ
κ
(eκx−1)]α]β

(45)

as β = 1 we have

r(x) =
αβ(σeκx + λ)[e−λx−

σ
κ
(eκx−1)]α

[1− [e−λx−
σ
κ
(eκx−1)]α]

(46)

in equation 46

limx−→0 r(x) =∞ and limx−→∞ r(x) = 0
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3.12 Hazard function of Exponentiated Generalized Gompertz-Makeham
function

The hazard function is defined as the probability per unit time that a case which has
survived to the beginning of the respective interval will fail in that interval. Specifically,
it is computed as the number of failures per unit time in the respective interval, divided by
the average number of surviving cases at the mid-point of the interval. Mathematically,
the hazard function for a random variable X is defined as:

h(x) =
f(x)

1− F (x)
(47)

substituting the pdf and cdf of Gompertz-Makeham Distribution into equation 47 the
hazard function becomes

h(x) =
αβ(σeκx + λ)[e−λx−

σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1

1− [1− (e−λx−
σ
κ
(eκx−1))α]β

(48)

β = 1 in equation 48

h(x) =
α(σeκx + λ)[e−λx−

σ
κ
(eκx−1)]α

[e−λx−
σ
κ
(eκx−1)]α

(49)

then the hazard function becomes

h(x) = α(σeκx + λ) (50)

The behaviour of the hazard function as x approaches zero and as x approaches ∞ in
equation 50 are as follows:

h(x) = lim
x−→0

α(σeκx + λ) = α(σ + λ) (51)

and as
h(x) = lim

x−→∞
α(σeκx + λ) =∞ (52)

The plot for Hazard function graph, Reversed hazard rate graph, and Survival function
graph presented at Figure 2.

4 Order statistics

Let X1, X2..., Xn be a random sample from the exponentiated generalised
Gompertz-Makeham distribution with the cdf and pdf in equation 11 and 12 above
respectively. Let X1:n ≤ X2:n ≤ X3:n... ≤ Xn:n denote the order statistics obtained from
the sample then f1:n(x) of Xi:n for i=1,2,...,n. The probability density function of Xi:n is
given by

fi:n(x, α, β, σ, κ, λ) =
f(x)

B(i, n− i+ 1)
[F (x)]i−1[1− F (x)]n−i (53)

F(x) and f(x) are the cdf and pdf of the exponentiated generalised Gompertz-Makeham
distribution respectively, and B(.,.) is the beta function. This implies that:

fi:n(x) =
αβ

B(i, n− i+ 1)
g(x)[1−G(x)]α−1[1− (1−G(x))α]βi−1

(1− (1− (1−G(x))α)β)n−i
(54)
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Figure 2: The plot for: (a) Hazard function graph, (b) Reversed hazard rate graph, and
(c) Survival function graph.

Using the binomial series expansion for the last term in equation 54

(1− z)β−1 =
∑∞
i=0(−1)i

(
β − 1

i

)
zi =

∑∞
i=0

(−1)iΓ(β)

Γ(β − i)i!
zi

fi:n(x) =
n−i∑
p=0

(−1)p
(
n− i
p

)
αβ

B(i, n− i+ 1)
g(x)[1−G(x)]α−1

[1− (1−G(x))α]β(i+p)−1
(55)

Again applying the binomial expansion to the last term in equation 55

fi:n(x) =
n−i∑
p=0

∞∑
q=0

(−1)p+q
(
n− i
p

)(
β(i+ p)− 1

q

)
αβ

B(i, n− i+ 1)
g(x)

[1−G(x)]α(q+1)−1

(56)

Finally, apply the expansion on the last term equation 56

fi:n(x) =
n−i∑
p=0

∞∑
q=0

∞∑
r=0

(−1)p+q+r
(
n− i
p

)(
β(i+ p)− 1

q

)(
α(q + 1)− 1

r

)
αβ

B(i, n− i+ 1)
g(x)G(x)r

(57)

fi:n(x) =
αβ

B(i, n− i+ 1)

∞∑
r=0

Zrg(x)G(x)r (58)

where

Zr =
n−i∑
p=0

∞∑
q=0

(−1)p+q+r
(
n− i
p

)(
β(i+ p)− 1

q

)(
α(q + 1)− 1

r

)
(59)
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G(x) and g(x) in equation 59 are the cdf and pdf of Gompertz-makeham distribution
in equation 6 and 7 recpectively.
The pdf of order statistics are observed to be equal to the density of the Gompertz-
Makeham distribution multiplied by an infinite weighted power series of cdfs for the
Gompertz-Makeham distribution

The rth moment of E(Xr
i:n) is given by E(Xr

i:n) =
∫∞
−∞ x

rfi:n(x)
therefore

E(Xr
i:n) =

αβ

B(i, n− i+ 1)

∞∑
r=0

Z∗r

∫ ∞
−∞

xrhr+1 (60)

and the moment generating function of E(Xr
i:n) is given by

M(t) =
αβ

B(i, n− i+ 1)

∞∑
r=0

Z∗r

∫ ∞
−∞

etxhr+1 (61)

where Z∗r =
Zr
r + 1

and hr+1 = (r + 1)g(x)G(x)r

5 Entropies

An entropy is a measure of variation or uncertainty of a random variable. There are two
well known entropies, Renyi and Shannon entropy.
The Shannon entropy is defined as E[−logf(x)] = −

∫∞
−∞ f(x)logf(x)dx

so if X is a random variable, the Shannon entropy exponentiated generalised Gompertz-
Makeham distribution is given as

E[−log(f(x))] = −log(αβ)− E(
∞∑
i=0

log(λ+ σeκx)− α
∞∑
i=0

(−λx− σ

κ
(eκx − 1))

−(β − 1)log(
∞∑
i=0

[1− (e
−λx−

σ

κ
(eκx−1)

)α]))

(62)

The Renyi Entropy is defined as

IR(c) =
1

(1− c)
log(

∫ ∞
−∞

f(x)cδx) (63)

f(x)c = (αβ)c(σeκx + λ)c[e
−λx−

σ

κ
(eκx−1)

]cα[1− [e
−λx−

σ

κ
(eκx−1)

]α]c(β−1)

f(x)c = (αβ)c
∑∞

i=0
(−1)i

(
c(β − 1)

i

)
(σeκx + λ)c[e

−λx−
σ

κ
(eκx−1)

]α(c+i)

f(x)c = (αβ)c
∞∑
i=0

∞∑
r=0

(−1)i+r
(
c(β − 1)

i

) (
ασ

κ
(c+ i))r

r!
(σeκx + λ)c[e

−λx−
σ

κ
eκx

]α(c+i) (64)

substitute equation 64 in equation 63,then becomes

IR(c) =
1

(1− c)
log(αβ)c

∞∑
i=0

ti,r

∫ ∞
−∞

(σeκx + λ)c[e
−λx−

σ

κ
eκx

]α(c+i)δx (65)
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ti,j =
∑∞
i=0

∑∞
r=0(−1)i+r

(
c(β − 1)

i

) (
ασ

κ
(c+ i))r

r!

∫ ∞
−∞

(σeκx + λ)c[e
−λx−

σ

κ
eκx

]α(c+i)δx =

(
c

i

)
λc−1σi

κ
Γ((i− λ

κ
)(α(c+ i)), (α

σ

κ
(c+ i))) (66)

substitute equation 66 into equation 65 the Renyi entropy becomes

IR(c) =
1

(1− c)
log((αβ)c

∞∑
i=0

ti,r(

(
c

i

)
λc−1σi

κ
Γ((i− λ

κ
)(α(c+ i)), (α

σ

κ
(c+ i)))) (67)

6 Inferential aspect of the model

6.1 Parameter estimation using maximum likelihood estimate method

The parameters of the exponentiated generalized Gompertz-Makeham distribution can be
estimated using the method of maximum likelihood estimation (MLE)
Let x1, x2, ...xn denote a random sample of size n from the exponentiated generalised
Gompertz-Makeham distribution.
The likelihood function is derived by taking the logarithm of the probability density
function of the exponentiated generalised Gompertz-Makeham function and also take the
derivative of each parameters;

L(X̂|α, β, σ, κ, λ) =
n∏
i=1

[αβ(σeκx + λ)[e−λx−
σ
κ
(eκx−1)]α[1− (e−λx−

σ
κ
(eκx−1))α]β−1] (68)

logL(X̂|α, β, σ, κ, λ) = n logα + n log β +
n∑
i=1

log (σeκx + λ)

+ α
n∑
i=1

log e−λx−
σ
κ
(eκx−1) + β − 1

n∑
i=1

log [1− (e−λx−
σ
κ
(eκx−1))α]

(69)

differentiating the likelihood function to each of the parameters : α, β, σ, κ, λ gives;
if l = logL(X̂|α, β, σ, κ, λ) then

δl

δα
=
n

α
+

n∑
i=1

(−λx− σ

κ
(eκx − 1))(1− (β − 1)(e−λx−

σ
κ
(eκx−1))α

1− (e−λx−
σ
κ
(eκx−1))α

) (70)

δl

δβ
=
n

β
+

n∑
i=1

log{1− (e−λx−
σ
κ
(eκx−1))α} (71)

δl

δσ
=

n∑
i=1

[
eκx − α

κ
(eκx − 1)(σeκx + λ)

(σeκx + λ)
− α(β − 1)(eκx − 1)(e−λx−

σ
κ
(eκx−1))α

κ(1− (e−λx−
σ
κ
(eκx−1))α)

] (72)

δl

δλ
=

n∑
i=1

[
1− αx(σeκx + λ)

(σeκx + λ)
+
αx(β − 1)(e−λx−

σ
κ
(eκx−1))α

(1− (e−λx−
σ
κ
(eκx−1))α)

] (73)

δl

δκ
=

n∑
i=1

[
σxeκx

(σeκx + λ)
− α(β − 1)(σ(eκx − 1)− σkxeκx)(e−λx−σκ (eκx−1))α

κ2(1− (e−λx−
σ
κ
(eκx−1))α)

] (74)
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the solutions of
δl

δα
= 0,

δl

δβ
= 0,

δl

δσ
= 0 ,

δl

δκ
= 0,

δl

δλ
= 0 gives the maximum likelihood

estimate for parameters a, b, σ, κ, λ respectively. Since there is no explicit solutions to
the equation, we resolved into into numerical package using Maple
For interval estimation and hypothesis tests on model parameters, we require the
Fisher’s information matrix, the 5 by 5 unit observed information matrix I = Jn(., .)
For estimation and hypothesis tests on model parameters, we require the observed
information matrix, the 5 by 5 unit observed information matrix I = Jn(., .)

I =



Jαα Jαβ Jασ Jαλ Jακ

Jβα Jββ Jβσ Jβλ Jβκ

Jσα Jσβ Jσσ Jσλ Jσκ

Jλα Jλβ Jλσ Jλλ Jλκ

Jκα Jκβ Jκσ Jκλ Jκκ


(75)

I =



var(α̂α) cov(α̂β) cov(α̂σ) cov(α̂λ) cov(α̂κ)

cov(β̂α) var(β̂β) cov(β̂σ) cov(β̂λ) cov(β̂κ)

cov(σ̂α) cov(σ̂β) var(σ̂σ) cov(σ̂λ) cov(σ̂κ)

cov(λ̂α) cov(λ̂β) cov(λ̂σ) var(λ̂λ) cov(λ̂κ)

cov(κ̂α) cov(κ̂β) cov(κ̂σ) cov(κ̂λ) var(κ̂κ)


(76)

The information matrix were obtained by taking the second derivative in respect to their
parameters. Therefore an 100(1− q) asymptotic intervals for parametersα, β, λ, κ, σ α ±
Zq

2

√
var ˆ(α), β ± Zq

2

√
var ˆ(β) , λ± Zq

2

√
var(̂λ), κ± Zq

2

√
var(̂κ), σ ± Zq

2

√
var(̂σ)

var(.) is the diagonal of matrix J−I corresponding to each parameter and Z q
2

is the
quantile.
The co-variances are obtained as follows For internal estimation and hypothesis tests on
model parameters, we require the observed information matrix, the 5 by 5 unit observed
information matrix I = Jn(., .)

7 Conclusion

In this work, a five-parameter exponentiated generalization of Gompertz-Makeham
distribution was derived and their properties such as mean, median, mode and
distribution of order statistics were also obtained. The distribution was characterized by
relating it to other probability distributions and some areas of application of the
exponentiated generalization of Gompertz-Makeham distribution were identified. The
model is positively skewed, its shape could be decreasing or unimodal (depending on the
values of the parameters)
Further studies are on going to derive more generators which can be use to model many
other distributions which can be the best in applications.
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Appendices

Jaa = − n
a2

+
n∑
i=1

(
−λx− σ (eκx−1)

κ

)2 (
− (b− 1)

(
e−λx−

σ (eκx−1)
κ

)a)
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)2 (77)

Jab = −
n∑
i=1

(
−λx− σ (eκx−1)

κ

)(
e−λx−

σ (eκx−1)
κ

)a
(

1−
(

e−λx−
σ (eκx−1)

κ

)a) (78)
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Jaκ =

n∑
i=1

(
σ (eκx − 1)

κ2
−
σ xeκx

κ

)1−
(b− 1)

(
e−λx−

σ (eκ x−1)
κ

)a
(
1−
(
e−λx−

σ (eκ x−1)
κ

)a)
+

n∑
i=1

(
−λx−

σ (eκx − 1)

κ

)
−a (b− 1)

(
σ (eκ x−1)

κ2 − σ xeκ x

κ

)(
e−λx−

σ (eκ x−1)
κ

)a
(
1−
(
e−λx−

σ (eκ x−1)
κ

)a)2


(79)

Jaλ = −
n∑
i=1

x

1−
(b− 1)

(
e−λx−

σ (eκ x−1)
κ

)a
(
1−
(
e−λx−

σ (eκ x−1)
κ

)a)
+

n∑
i=1

(
−λx−

σ (eκx − 1)

κ

)
ax (b− 1)

(
e−λx−

σ (eκ x−1)
κ

)a
(
1−
(
e−λx−

σ (eκ x−1)
κ

)a)2


(80)

Jaσ = −
n∑
i=1

(eκx − 1)

κ

1−
(b− 1)

(
e−λx−

σ (eκ x−1)
κ

)a
(
1−
(
e−λx−

σ (eκ x)
κ

)a)
+

n∑
i=1

(
−λx−

σ (eκx − 1)

κ

)
 a (eκx − 1)

κ
(b− 1)

(
e−λx−

σ (eκ x−1)
κ

)a
(
1−
(
e−λx−

σ (eκ x−1)
κ

)a)2


(81)

Jbb = − n
b2

(82)

Jbσ =
n∑
i=1

a (eκx − 1)

κ

(
e−λx−

σ (eκx−1)
κ

)a
(

1−
(

e−λx−
σ (eκx−1)

κ

)a) (83)

Jbλ =
n∑
i=1

x
(

e−λx−
σ (eκx−1)

κ

)a
1−

(
e−λx−

σ (eκx−1)
κ

)a +
n∑
i=1

ax
(

e−λx−
σ (eκx−1)

κ

)a (
−λx− σ (eκx−1)

κ

)
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)2 (84)

Jbκ = −
n∑
i=1

a
(
σ (eκx−1)

κ2
− σ xeκx

κ

)(
e−λx−

σ (eκx−1)
κ

)a
1−

(
e−λx−

σ (eκx−1)
κ

)a (85)

Jσσ =
n∑
i=1

− (eκx)2

(σ eκx + λ)2
+
a2(b− 1)(eκx − 1)2

(
e−λx−

σ (eκx−1)
κ

)a
κ2
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)2

 (86)

˜

Jσλ =
n∑
i=1

− eκx

(σ eκx + λ)2
+
a2x(b− 1)(eκx − 1)

(
e−λx−

σ (eκx−1)
κ

)a
κ
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)2

 (87)
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Jσκ =
n∑
i=1


(
xeκx − axeκx(σ eκx + λ)

κ
− a(eκx − 1)σx eκx

κ
+
a(eκx − 1)(σ eκx + λ)

κ2

)
(σ eκx + λ)



−


(
eκx − a(eκx − 1)(σ eκx + λ)

κ

)
σxeκx

(σ eκx + λ)2

−
a(b− 1) (κxeκx − (eκx − 1))

(
e−λx−

σ (eκx−1)
κ

)a
κ2
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)


−


a2(
−σxeκx

κ
+
σ(eκx − 1)

κ2
)(b− 1)(eκx − 1)

(
e−λx−

σ (eκx−1)
κ

)a
κ

(
1−

(
e−λx−

σ (eκx−1)
κ

)a)2


(88)

Jλλ =
n∑
i=1

− 1

(σ eκx + λ)2
−
a2x2(b− 1)

(
e−λx−

σ (eκx−1)
κ

)a
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)2

 (89)

Jλκ =
n∑
i=1

− 1

(σ eκx + λ)2
+
a2x(b− 1)

(
σ (eκx−1)

κ2
− σ xeκx

κ

)(
e−λx−

σ (eκx−1)
κ

)a
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)2

 (90)

Jκκ =
n∑
i=1

(
−σx

2eκx ((σ eκx + λ)− σeκx)

(σ eκx + λ)2

)
+

a(b− 1)σx2eκx
(

e−λx−
σ (eκx−1)

κ

)a
κ

(
1−

(
e−λx−

σ (eκx−1)
κ

)a)
+

2a(b− 1) (σ(eκx − 1)− σκxeκx)

(
e−λx−

σ (eκx−1)
κ

)a
κ3
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)
−


a2(b− 1) (σ(eκx − 1)− σκxeκx)

(
σ (eκx−1)

κ2
− σ xeκx

κ

)(
e−λx−

σ (eκx−1)
κ

)a
κ2
(

1−
(

e−λx−
σ (eκx−1)

κ

)a)2



(91)


