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Abstract 

 Restricted Mean Survival Time (RMST) is well-established, but underutilized 

measure that can be interpreted as the average event-free survival time up to a pre-

specified time point. In the last decade RMST received substantial attention and was 

advocated as an alternative for the Hazard Rate when the proportionality assumption is 

not met. Currently studies with time-to-evet outcomes routinely report survival curves 

and hazard rates. Research planning assumes extraction of comparative effect 

measures and variances that facilitates sample size calculations. Here we assessed the 

possibility of extracting clinically meaningful effect size estimates for RMST based 

research plans from studies that report survival curves and hazard rates. This 

assessment was based on simulations using Exponential and Weibull distributions. The 

simulations suggest that under certain conditions meaningful RMST effect size 

estimates can be extrapolated form published hazard rates. However, in cases when the 

proportionality assumption is in doubt (i.e. when RMST have most utility) extraction of 

meaningful estimates is not feasible.     
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1. Introduction 

The Hazard Ratio (HR) is one of the most common statistics in clinical studies. 

Estimation and interpretation of hazard functions and group wise comparisons 

assumes constant rates over the follow-up time. This assumption can be relaxed; 

however, this results in increased complexities in interpretation. One notable 

exception is the Restricted Mean Survival Time (RMST), that quantifies the expected 
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life expectancy after the intervention up to a time point of interest (Kim et al., 2017; 

Royston & Parmar, 2013; Uno et al., 2014). When the proportional hazards 

assumptions of classical survival analysis is violated this approach offers an 

straightforward and easy to interpret and clinically meaningful estimates (Royston & 

Parmar, 2011). In clinical studies where there is suspicion of substantial departure 

from the proportional hazards assumption testing RMST instead of log-rank test is a 

recommended alternative (Huang & Kuan, 2018). Generally, there is agreement 

between RMST and HR about the statistical significance of the treatment effect, but 

regarding treatment-effect measures RMST yielded more conservative estimates than 

HRs (Trinquart et al., 2016). 

One important task for an applied statistician is study design, i.e. making sure that 

the chose study design and collected data answers in proper fashion the postulated 

research question. A central aspect of this task is sample size calculations, assuring 

the collection of enough data for statistical inference. Powering clinical studies with 

time-to-event outcomes as a long history and a rich literature. However, for the 

relatively old but newly rediscovered RMST we still lack routines for power 

calculations. This not so much form a statistical point of view, once we have suitable 

effect size and variability estimates powering for RMST analysis is a routine task. 

(Royston & Parmar, 2013).  Extraction of effect size and variability estimates, on the 

other hand is far from being a trivial task. Clinical studies rarely report RMST and 

routinely resorts presentation of survival curves and/or hazard rates.  

In this note we examine the possibility of obtaining feasible effect size estimates 

for testing RMST from published data. We evaluate if it is possible to obtain robust 

estimates with simple analytical assumptions.  
 

2. Definitions and Notations  

2.1 Restricted Mean Survival Time  

The survival function is estimated with the Kaplan-Meier estimator  

�̂�(𝑡) =  ∏ (1 −
𝑑𝑖

𝑌𝑖
)𝑡𝑖≤𝑡 , 

(1) 

where 𝑌𝑖 is the number of patients at risk at time 𝑡𝑖 and 𝑑𝑖 is the number of patients 

who fail in the interval 𝑡, 𝑡 + 𝑑𝑡. 

The mean survival time is given by 

𝐸[𝑇] =  ∫ 𝑆(𝑡)𝑑𝑡
∞

0

 
(2) 

however, the mean survival time can be estimated only if don not have any censoring 

and the life length of every patient is known. 

An alternative the mean survival time is the τ-restricted mean survival time. Here, 

we do not aim to follow-up all patients until their death but to a pre-define length of 

time. 

RMST is estimated as 

�̂�(𝜏) =  ∫ �̂�(𝑡)𝑑𝑡
𝜏

0

 
(3) 

where we replace the survival function by its estimate the Kaplan-Meier curve. 
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For a two-group comparison (i.e. treatment vs placebo) with  �̂�0(𝜏) and  �̂�1(𝜏) the 

difference is given by  
𝐷(𝜏) =  𝜇0(𝜏) − 𝜇0(𝜏) (4) 

 

and estimated as  

�̂�(𝜏) = ∫ {�̂�0(𝑡) − �̂�1(𝑡)}𝑑𝑡.
𝜏

0
  

(5) 

 

Under the null-hypothesis of 𝜇1(𝜏) =  𝜇0(𝜏)  this difference is normally distributed.  

Alternatively, one can use the ratio estimator  

𝑅(𝜏) =
𝜇0(𝜏)

𝜇1(𝜏)
 (6) 

estimated as  

�̂�(𝜏) =  
∫ �̂�0(𝑡)𝑑𝑡

𝜏

0

∫ �̂�1(𝑡)𝑑𝑡
𝜏

0

  (7) 

 
2.2 Proportional Hazards Model  

The hazard gives the probability of experiencing the event of interest in an infinitesimal 

time interval after time t (in a very short interval, i.e. in the next ‘moment’). The hazard 

function is given by 
ℎ(𝑡)𝑑𝑡 = Pr(𝑡 < 𝑇 < 𝑡 + 𝑑| min(𝑇, 𝐶) ≥ 𝑡).  (8) 

In most cases we aim to compare 2 (or more) time-dependent functions, the survival 

function 𝑆(𝑡) or the hazard function ℎ(𝑡).  

Usually the null hypothesis will be 𝐻0: 𝑆1(𝑡) =  𝑆0(𝑡), where 𝑆0(𝑡) represents the 

baseline survival (i.e. survival in the control group) and 𝑆1(𝑡) the survival of the treated 

group. As the survival, and even more the hazard function, can take various forms, 

the formulation of the alternative hypothesis as 𝐻𝐴: 𝑆1(𝑡) ≠  𝑆0(𝑡) is not practicable.  

This issue has been debated for a long time within the statistical literature. The solution 

traces back to the seminal work by Lehmann (Lehmann, 1953) on rank tests, the 

‘Lehmann alternatives’. The Lehmann alternative assumes that the distribution of the 

response (𝑆1(𝑡) or  ℎ1(𝑡) in the present setting) is a specified function of the baseline 

(𝑆0(𝑡) or  ℎ0(𝑡)).  

In the survival analysis setting this leads to the following alternative hypothesis 

𝐻𝐴: 𝑆1(𝑡) = {𝑆𝑜(𝑡)}𝜑. Using the relationship between the survival and hazard function 

this is equivalent to ℎ1(𝑡) = 𝜑ℎ𝑜(𝑡), i.e. the observed hazard is proportional to the 

baseline hazard by a factor of 𝜑, yielding the proportional hazards assumptions.  This 

formulation can be extended to include covariate information by assuming that 𝜑 =
𝑒𝛽𝑧.Here e is the Euler number, equaling approximately 2.72; β is regression 

coefficients and z is the covariate values. In clinical studies 𝑒𝛽, the hazard rate is often 

the main statistics of interest.  

 
2.3 The exponential survival models  

The exponential distribution is the simplest survival distribution with a constant hazard 
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rate, ℎ(𝑡) = ℎ.  The survival function is 𝑆(𝑡) =  𝑒−ℎ𝑡. For the exponential distribution 

the RMST can be obtained analytically based on equation 2 as  

  

𝜇(𝑡) =  ∫ �̂�(𝑡)𝑑𝑡
𝜏

0

=  ∫ 𝑒−ℎ𝑡𝑑𝑡
𝜏

0

=  
1 − 𝑒−ℎ𝜏

ℎ
 (9) 

 

Finding exact transformation between the parameters of interest, the HR, 𝐷(𝜏) and 

𝑅(𝜏)  is straightforward in the exponential case. Both 𝐷(𝜏) and 𝑅(𝜏)  are functions of 

the hazard rate, however the relationship in non-linear. First, we reparametrize  𝐷(𝜏) 

and 𝑅(𝜏)  with ℎ1 = ℎ0𝜑 and equation 4 can be expressed as  

 

𝐷(𝜏) =  
1 − 𝑒−ℎ0𝜑 𝜏

ℎ0𝜑 
−

1 − 𝑒−ℎ0𝜏

ℎ0
 (10) 

 

The ratio estimator (equation 7) is given by  

 

𝑅(𝜏) =
(1 − 𝑒−ℎ0𝜑 𝜏)

𝜑(1 − 𝑒−ℎ0𝜏)
 (11) 

 

 

 
3. Simulation Study  

3.1 Exponential distribution 

In this simplistic simulation we aimed to confirm numerically the appropriateness of 

equations 10 and 11. We simulated 1000 exponentially distributed time to events with 

in a hypothetical 2 arm study. For the placebo arm we assumed a hazard of 1/365 and 

a hazard rate between the who arm of 0.5. Additionally, we assumed an exponential 

censoring with hazard of 1/730. The time points of interest 𝜏 was set at 100, 200, 300 

and 500 days. We re-iterate the simulation 1000 times. For each simulation estimated 

�̂�(𝜏) and �̂�(𝜏) with equations 7 and 8. This required estimation of  ℎ𝑜, ℎ1 and 𝜑.  

We have run two simulations according to two scenarios. The first scenario 

assumed the we have access to 𝜑 and ℎ𝑜 needs to be extracted from survival curves 

as ℎ0 = −log (�̂�(𝑡))𝑡−1. Figure 1 presents the results of the simulation. The second 

scenario assumed that both ℎ𝑜 and ℎ1 needed to be extracted from the survival curves.  

For both scenario �̂�(𝜏) and �̂�(𝜏) were unbiased and almost identical (Figure 1).  
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Figure 1: Bias and variability for (a) the difference of two RMST estimates and (b) the 
ratio of two RMST estimates when the hazard in the placebo group is estimated and 
the hazard rate is known and (c) the difference of two RMST estimates and (d) the 

ratio of two RMST estimates when the hazard in the placebo and active arm is 
estimated. 

 

3.2 Weibull distribution 

In this scenario we assessed the feasibility of the outlined algorithm when the 

assumptions are violated.  We simulated survival data with the Weibull distribution. The 

scale parameter was set to 365, while the shape first was set to 0.5 so the failure rate 

decreases over time; second to 2 so the failure rate increases with time. As previously 
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we assumed exponential censoring with hazard of 1/730. The simulation was repeated 

1000 times. For each iteration se simulated a data set according to the above described 

parameters. Fitted Kaplan-Meier curves to the data, extracted the survival probability 

at 100, 200, 300 and 500 days. Estimation proceeded with the assumption of 

exponential distribution, which is this case is a clear violation of assumptions.  We 

estimated RMST as ∫ 𝑆(𝑡) = ℎ−1(1 − 𝑒−ℎ𝜏)
𝜏

0
. This RMST estimate was then compared 

to the true RMST estimated with numerical integration of the Weibull survival function 

with the above listed parameter values.    

Figure 2 presents the results of the simulation. As expected a τ dependent negative 

bias was observed when the failure rate increased with time. Opposite to this, when 

the failure rate decreases with time the RMST estimated assuming exponential 

distribution overestimated the true RMST.  
 

Figure 2: Bias and variability for RMST with wrongly assumed exponential distribution 
(a) when the true distribution is Weibull with increasing failure rate and (b) when the 

true distribution is Weibull with decreasing failure rate. 

 
4. Application on real life data 

Here we apply the above outlined routines to three studies that were summarized by 

(Uno et al., 2014). We chose these studies as beside the usual survival curves and 

hazard rates there were available estimates for both 𝑅(𝜏) and 𝐷(𝜏). 

The first study by Rajkumar and collaborators (Rajkumar et al., 2010), an Eastern 

Cooperative Oncology Group study, compared patients treated with low- and high dose 

of dexamethasone for newly diagnosed multiple myeloma. The authors reported a 

hazard rate of 0.87 and from the survival curves we could extract that �̂�(40 𝑚) = 0.47. 
At 40 months 𝑅(𝜏) = 1.06 and 𝐷(𝜏) = 2.2. Here, it is visible form the survival curves 

(Figure 3 left down in Rajkumar et al., 2010) that the proportionality assumption is 

violated. Based on equations 7 and 8 we obtained  �̂�(𝜏) = 1.04 and �̂�(𝜏) = 1.2, a clear 

deviation from the reported values. Likely if estimation would had been restricted to 30 
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months we would had obtained better estimates.  

The second compared single-agent pemetrexed (P) versus the combination of 

carboplatin and pemetrexed (CP) in first-line therapy for patients with advanced non-

small-cell lung cancer (Zukin et al., 2013). The authors reported a hazard rate of 0.95 

and from the survival curves we could extract that �̂�(24 m) = 0.01. At 24 months 𝑅(𝜏) =
1.49 and 𝐷(𝜏) = 3.9. Based on equations 7 and 8 we obtained  �̂�(𝜏) = 1.52 and �̂�(𝜏) =

4.02. 

The third study considered investigate the safety and efficacy of adding 

bevacizumab to fluorouracil, leucovorin, and oxaliplatin (FOLFOX6) for the adjuvant 

treatment of patients with stage 2-3 colon cancer (Allegra et al., 2012). The authors 

reported a hazard rate of 0.95 and from the survival curves we could extract that 

�̂�(60 m) = 0.83. At 60 months 𝑅(𝜏) = 1 and 𝐷(𝜏) = 0.3. Based on equations 7 and 8 

we obtained  �̂�(𝜏) = 1 and �̂�(𝜏) = 0.24. 

 
5. Discussion  

When planning a clinical trial one question that needs to be considered how well the 

possible competitors fare and compared with them how much effect we would like to 

see. With the effect size assumed variance set one can proceed with sample size 

calculations. In this note we have focused on obtaining effect size estimates form 

published studies in a hypothetical situation when statistical powering is done for 

RMST. RMST is a well-established, yet underutilized measure that can be interpreted 

as the average event-free survival time up to a pre-specified, clinically important time 

point.(Kim et al., 2017; Uno et al., 2015) and may improve the accuracy of the 

prognostic estimates that influence clinical decisions and information given to patients 

(Couchoud et al., 2017). Studies with time-to-event endpoints generally resort to 

summaries the data with survival curves and hazard rates. Statistical inference is 

generally based hazard rates. If the proportional hazards assumption is met then the 

log-rank test is generally a more powerful test, however RMST based approaches can 

be of value in certain situations (Huang & Kuan, 2018). In roughly, 19 % of oncology 

clinical trials using time-to-event endpoint there is evidence of non-proportional 

hazards, and in this case RMST offer a more parsimonious estimates while keeping 

the conclusions (Rulli et al., 2018). Additionally, RMST is a viable alternative to the 

HR if causality is of interest (Stensrud et al., 2018). Just as HR (or any other regression 

estimands) RMST can be adjusted either by using pseudo-observations and 

generalized estimating equations (Andersen et al., 2004) or by integrating an adjusted 

Kaplan‐Meier estimator with inverse probability weighting (Conner et al., 2019).  

In this paper we have evaluated if it is possible to extract meaningful effect size 

estimates that would aid statistical study design for time-to-event outcomes by the 

means of RMST. We had primarily focused on situation where the statistical has 

access only to published data, i.e. survival curves and hazard rates. With simplistic 

assumptions we could show that it is possible to extract meaningful estimates under 

certain circumstances.   

Our starting point was that the studied survival times are exponentially distributed. 

This is a very common assumption and clinical trials. In this case this assumption was 

necessary as RMST was calculated based on the survival probability at the restriction 

point. Likely if we could had used other more flexible distributions the precision of the 
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estimates would had increased. However, such estimation wasn’t possible as 

parameters of more flexible distributions such as Weibull or Gamma are 

nonidentifiable in this setting. Estimation possible only if the parameters of the 

assumed distribution are known at least in one arm of the study (Weir & Trinquart, 

2018).    

If the distribution of the survival time departs form the exponential distribution (i.e. 

accelerated failures) and/or there is genuine deviation from the proportional hazards 

assumptions then this simplistic approach fails. In these cases, extraction of 

necessary information from published results must resort to a rather diminished pool 

of research articles that present RMST measures. Alternatively, reconstruction of the 

individual level data from published Kaplan-Meier curves (Guyot et al., 2012) and 

estimation of RMST is needed. Though this requires technical expertise that applied 

researchers might not possess and for a research planning point of view this is a 

drawback of the method. An additional difficulty that researchers might face is 

departure from the normal distribution for difference between two arms in restricted 

mean survival time (Lawrence et al., 2019), that complicates statistical inference. 

RMST are useful tools for every statistician, however as statistical science stands 

today that are more valuable as ad-hoc analyses of collected data based on the 4- 

step approach (Royston & Parmar, 2011). The applicability of RMST in research 

planning is further hindered by difficulties in obtaining reliable variance estimates 

under different grades of censoring. Thus, further research/evaluations are needed to 

establish routines for research planning. 
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