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Abstract 

 In this paper a model for the number of “damage” product sales is studied. The 

product sales are run into underreporting counts, caused by a delay on input process of 

the system called sales cycle. The goal of the study is to estimate the parameters of the 

regression model of product sales on an explanatory variable. It is the actual number of 

product sales. The model used is a mixture of the Poisson and the Binomial distributions. 

The parameters of the regression model are estimated by a Bayesian approach and 

Markov Chain Monte Carlo simulation using Gibbs sampling algorithm. The results of 

estimation clearly showed a gap between undamage product sales and the actual 

number. The gap is the number of damaged product sales.  
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1. Introduction 

Misreporting counts can occur in any system of reporting. Li et al.  (2003), in his 

regression model, misreporting occurs when an individual report on the number of 

observed events is different from the actual values (as cited in Pararai, 2010). Thus, 

misreporting counts divided into two, underreporting and over reporting counts. 

Underreporting is a problem in data collection, when the counting of observed events, 

for some reason incomplete (Neubauer et al., 2011). Underreported counts occur when 

the number of observed events, reported smaller than the actual number of 
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occurrences. Instead, over reported counts occur when the number of observed 

events, reported more than of the actual number of occurrences. 

 In this research, underreported counts occurred as a result of delay on input 

process of the number of product sales repeatedly. In this system (see Figure 1), the 

input process of the number of product sales will directly reduce the stock number of 

the products in the counter. That would indirectly lead to over reporting the stock 

number the products in the counter. This is a major factor that caused errors on the 

next production's plan or in the distribution of products. In order to reduce the risks, the 

actual number of product sales is need to be estimated. 

 The consequence of the underreporting counts is the number of product sales 

reported is only part of the actual number of product sales. There are a number of 

product sales which are unreported. It means that a product sold at a counter will have 

two possible treatments from the administrator i.e. inputted into the system or not. An 

opportunity for a product sold at a counter inputted to the system called probability of 

reported. This probability has a value ranging from 0-1. It is also known that the actual 

number of product sales in a counter within a month was random and ranged between 

0-21 pieces with an average of 4 pieces per month. Both of the information can be 

considered as a prior information that can be used in the estimation of the actual 

number of product sales. 

 The actual number of product sales is influenced by the activity of selling the 

product itself. As cited in Sinaga (2013), one of the factors that affects sales activities 

is market conditions (Basu, 2005). The market conditions can be seen as a rate of 

product sales at its counter. Thus, to estimate the actual number of product sales, need 

an analysis that can describe the relationship between the number of products sales 

(underreported) with rate of product sales involving both the prior information before. 

 So far modeling of the count data using Poisson regression model and binomial 

regression models. However, both models can be used if the count data is considered 

accurately reported. As cited in Papadatos (2005), models for under-reported counts 

were first introduced in Moran's characterization (1952) and Rao-Rubin condition 

(1964). Then, several researchers have developed a model for underreported counts, 

including the Poisson regression model for underreported counts developed by 

Winkelmann (1996), Mukhopadhyay (1997) developed the negative binomial 

regression model for underreported counts (as cited in Pararai, 2010) and the 

generalized Poisson-Poisson mixture models which can be used for misreporting 

counts (under, over and accurately reported) developed by Pararai (2010). 

 In estimating the model parameters, Pararai (2010) used classical statistical 

approach which only use sample data information through the maximum likelihood 

method. Meanwhile, Winkelmann (1996) used a Bayesian statistical approach in 

estimating the model parameters. 
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Figure 1: Reporting System of A Garment Company 
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2. Poisson Model for Underreported Counts 

Moran (1952) introduced a characterization of underreported counts (as cited in 

Papadatos, 2005). It is stated that if N1 and N2 are non-degenerate independent 

random variables and its values are non-negative and if the conditional distribution of 

N1 (N1+N2 =n) is binomial and its parameter is  0,1,n N   with success probability 

0,1p     for some n N , 1 2 0P N N n      then the distributions of 1 2,N N  and 

 1 2N N n   are Poisson. For some i N , 1 0P N i    and 2 0P N i    . 

Another form of Moran's (1952) characterization was introduced by Rao and Rubin 

(1964), independence of N1 and N2 called as Rao-Rubin condition. For some 0,1p   

, then Rao-Rubin condition implies that N1 and N2 follow a Poisson distribution with 

parameter p and  1 p  for some 0  . 

 
3. Poisson Regression Model for Underreported Counts 

Poisson regression model for underreported counts which is developed by 

Winkelmann (1996) was also a mixture of binomial distribution and Poisson distribution.  

Let 
*

iY  as an actual number of observed events in a specific time for individual i. 

Assume that 
*

iY  depends on ix  and follows a Poisson distribution with parameter 

exp .i i    x β  Let iY  as the reported number of observed events in a specific time for 

individual i and follows a binomial distribution with parameters 
*

iY  and  p (probability of 

reported).  

Underreported counts occur if *
i iY Y  so the marginal distribution of iY  is a Poisson 

regression model with parameter exp .i ip p    x β  

Parameter pi cannot be treated as a fixed parameter since the model is singular 
with n+k parameter and n data points (Winkelmann, 1996). To solve this problem, 
Winkelmann consider the parameter pi as a random variabel which follows a certain 
distribution. Further, Winkelmann (1996) obtained the posterior distribution of y*, p and 
β   as:  

         * * *, , , ,

posterior priorlikelihood

P y p y P y y p P y f f p   β x β β  (1) 

Drapper & Guttman (1971) assume that the parameters N and p are independent 
random variables, where N follows a discrete uniform distribution and p follows a beta 
distribution (as cited in Moreno, 1998). Meanwhile, Raftery (1988) assumes that N 
follows a Poisson distribution with parameter λ and p follows a uniform distribution (as 

cited in Moreno, 1998). Winkelmann (1996) assumes that N or *Y  follows a Poisson 

distribution with parameter exp    x β  where the β assumed follows a normally 

distribution with parameter μ and σ, and p assumed follows a uniform distribution. The 
Posterior distribution of Yi

* is (Winkelmann,1996) : 
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 (2) 

with  * 0,1, 2, ; 0,1, 2, ;0 1; ; 1, 2, ,i i iY Y p i n      β   

4. Markov Chain Monte Carlo (MCMC) 

MCMC is done by drafting markov chain that converges quickly on the posterior 
distribution. MCMC generate sample data of parameter θ which has a spesific 
distribution through an algorithm and done iteratively (the value of each step depends 
on the previous step). Gibbs sampling is one of the MCMC algortihm which usually 
used. Gibss sampling can be applied if the conditional distribution of each parameter 
is known. 

Estimation of the paramater of the model using MCMC will depend on the 
determination of the burn in period, which is done in line with determination the 
convergence of the algorithm using trace plot, autocorrelation plot and ergodic mean 
plot.  

Base from the posterior distribution developed by Winkelmann, it is obvious that it 
is difficult to determine the kind of posterior distribution. To facilitate the parameter 
estimation, Markov Chain Monte Carlo (MCMC) simulation with full conditional 
distribution is used as given in the Winkelmann (1996). The MCMC Algorithm is as 
follows : 

1. Set the initial value of each parameters 
 * 0

,Y  0p and 
 0
β  

2. Set the number of iteration T 
3. For t = 1, 2, …, T repeat the following steps : 

a. Generate new candidate of 
 * t

iY  from    1 1* , ,
t t

i i iY p Y
 

β   

b. Generate new candidate of 
 t
ip  from  *

,
t

i i ip Y Y  

c. Generate new candidate of 
 tβ  from  *

,
t

i iY Yβ  using Random-Walks 

algorithm with     11 2tt


  

  
 β β V z  and  ~ ,DNz 0 I   

4. Update the values of each parameter using the values obtained by the 
simulation. 

5. Check the convergence of the algorithm using Autocorrelation plot, Trace plot 
and Ergodic mean plot  

6. Determine the burn in period.  
7. From the simulated values after the burn-in until the last iteration count:: 
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a. The average value and standard deviation of the parameter β  

b. The average value and standard deviation of the parameter ip  for 

1,2, ,i n    

c. The average value and standard deviation of the parameter *
iY for

1,2, ,i n    

 
5. Results and Discussion 

The data used in this study is product sales at 108 counters in August 2013 of a 
garment company in Bandung City, Indonesia. These counters belong to the group of 
regions that have the highest sales target compared with other counters across of 
Indonesia. The rate of product sales of these counters was also the highest compared 
with others. This causes the risk of delay on input process is very high, while the 
products distributions must run every week and production plans run every month (see 
Figure 1). This is a major factor that lead in increasing the errors on the marketing 
strategies (se Figure 1). In order to reduce the risks, the actual number of product sales 
is need to be estimated. 

Count variable, reported number of product sales has values between 1-26 pieces 
with an average of 5.44 and standard deviation 4.57. While the independent variable 
is the rate of products sales in each counter and divided into 4 categories such as very 
high, high, low and very low. Therefore, the regression model of the actual number of 
product sales involved 3 dummy variables. MCMC simulation performed with 5000 
iterations and the algorithm before. To check the convergence of the series we use 
trace plot, autocorrelation plot and ergodic mean plot. 

All the trace plot (simulation p, simulation Y* and simulation β) did not show a certain 
pattern. The autocorrelation plots (simulation p, simulation Y* and simulation β) showed 
there are not an autocorrelation between two iterations. Ergodic mean plots showed 
that ergodic mean of the sample values of parameter p, Y* and β are stabilize after the 
first 3000 iterations. Then, the convergence of the simulation for parameter p and Y* 
and regression parameter β has been achieved with the burn in period of 3000 first 
iterations. 

From the simulations, the results of the regression parameter estimation can be 
seen in Table 1 below: 

Table 1: Regression Parameters Estimate 

Parameter Estimator Stdev. 

0  1.9929 0.4709 

1  1.0721 0.4792 

2  0.3876 0.4779 

3  0.1774 0.4843 

 
It can be stated that the average of the actual number of product sales in August 

2013 is a function of : 
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D D Di i i

E Y X ei i i

 
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 
 

   

Therefore, based on the category rate of products sales in each counters, the 
estimates of the average of the actual number of the product sales in August 2013 can 
be seen in Table 2.  

The mean values of product sales, obtained from the above regression equation, 
presented in the above table. It can be seen that the average of the actual number of 
the product sales in August 2013 at the counter with the rate of product sales very high 
is 21 pieces, at the counter with the rate of product sales high is 11 pieces, at the 
counter with the rate of product sales low is 9 pieces and at the counter with the rate 
of product sales very low is 7 pieces.  

Tabel 2: The Estimators of The Mean of The Actual Number of The 
Product Sales 

The Rate Of Product 
Sales 

*ˆ
i i iE Y X      

Very High 21 
High 11 

Low 9 
Very Low 7 

 
To determine the possibility occurences of underreporting counts, we compared the 

estimated value of the average of the actual number of the product sales (see Table 2) 
with the number of product sales recorded in the report (underreported counts). The 
results (see Table 3) show that the product sales of 87.04% counters from 108 are run 
into underreporting counts. It means that the risk of error in the production's plans, 
product distributions or in other marketing strategies will be high. 

Tabel 3:  The Comparison of The Estimators of The Average of The Actual Number 
of The Product Sales on Product Sales Report (Underreported Counts) 

The  Rate Of Product 
Sales 

ˆ
i iy   ˆ

i iy   ˆ
i iy   Total 

Percentage of 
Underreporting 

Very High 12 2 - 14 85.71% 

High 48 5 3 56 85.71% 

Low 32 2 2 36 88.89% 

Very Low 2 - - 2 100% 

Total 94 9 5 108 87.04% 

 
Meanwhile, the results of the estimation of the actual number of the product sales 

or *Y  and the probability for a product sold reported (inputted to the system) or p  

based on the category the rate of products sales in each counter are in the following 
Table 4, Table 5, Table 6 and Table 7. 

From Table 4, we get that the average of the estimators of the actual number of the 
product sales at a counter with the rate of product sales very high is ranging between 
17-26 pieces with a gap of 8-18 pieces compared to the number of the product sales 
listed in the report (obtained from the system). The mean percentage of underreporting 
counts of product sales is 60.03% or ranged from 10.71% to 90.75%. 
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Tabel 4 : The Estimators of Model Parameter at Counter with The Very High Rate 
of Product Sales 

Counter 𝑦𝒊  𝑦𝑖∗̂  𝑠𝑡𝑑(𝑦�̂�)  𝑝𝑖∗̂ 𝑠𝑡𝑑(𝑝𝑖∗̂)  𝑞𝑖∗̂𝑥100%
  

 𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�) 

 [𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�)] − 𝑦𝒊  

Counter 1 15 21 4 0.7122 0.1533 28.78% 17-26 2-11 
Counter 2 1 21 5 0.0957 0.0696 90.43% 15-26 14-25 

Counter 3 23 26 3 0.8648 0.1052 13.52% 23-29 0-6 

Counter 4 11 21 5 0.5583 0.1638 44.17% 16-26 5-15 

Counter 5 4 21 5 0.2299 0.1037 77.01% 16-26 12-22 

Counter 6 1 21 5 0.0925 0.0655 90.75% 15-26 14-25 

Counter 7 8 21 5 0.4234 0.1435 57.66% 15-26 7-18 

Counter 8 5 21 5 0.2804 0.1196 71.96% 16-26 11-21 

Counter 9 13 21 5 0.6445 0.1633 35.55% 16-26 3-13 

Counter 10 4 20 5 0.2362 0.1087 76.38% 15-26 11-22 

Counter 11 26 28 3 0.8929 0.0857 10.71% 26-31 0-5 

Counter 12 1 20 5 0.0959 0.0681 90.41% 15-26 14-25 

Counter 13 3 21 5 0.1852 0.096 81.48% 15-26 12-23 

Counter 14 5 21 5 0.2839 0.1181 71.61% 15-26 10-21 

Average 9 22 5 0.3997 0.1117 60.03% 17-26 8-18 

 
From Table 5, we get that the average of the estimators of the actual number of the 

product sales at a counter with the rate of product sales high is ranging between 8-14 
pieces with a gap of 3-8 pieces compared to the number of the product sales listed in 
the report (obtained from the system). The mean percentage of underreporting counts 
of product sales is 50.29% or ranged from 9.09% to 81.87%. 

Tabel 5 : The Estimators of Model Parameter at Counter with The High Rate of 
Product Sales 

Counter 𝑦𝒊  𝑦𝑖∗̂  𝑠𝑡𝑑(𝑦�̂�)  𝑝𝑖∗̂ 𝑠𝑡𝑑(𝑝𝑖∗̂)  𝑞𝑖∗̂𝑥100%   𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�) 

 [𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�)] − 𝑦𝒊  

Counter 1 11 13 2 0.8147 0.1324 18.53% 11-15 0-4 

Counter 2 5 10 3 0.526 0.1937 47.40% 7-14 2-9 

Counter 3 18 19 1 0.9091 0.0797 9.09% 18-20 0-2 

Counter 4 1 10 3 0.1813 0.1273 81.87% 7-13 6-12 

Counter 5 6 10 3 0.5947 0.1885 40.53% 7-13 1-7 

Counter 6 12 14 2 0.8328 0.1262 16.72% 12-16 0-4 

Counter 7 2 10 3 0.2778 0.1599 72.22% 6-13 4-11 

Counter 8 5 10 3 0.5255 0.193 47.45% 7-13 2-8 

Counter 9 5 10 3 0.5294 0.1921 47.06% 7-13 2-8 

Counter 10 1 10 3 0.1852 0.1315 81.48% 6-13 5-12 

Counter 11 3 10 3 0.366 0.1801 63.40% 7-13 4-10 

Counter 12 3 10 3 0.3612 0.177 63.88% 7-13 4-10 

Counter 13 2 10 3 0.2773 0.162 72.27% 6-13 4-11 

Counter 14 7 11 3 0.6781 0.1884 32.19% 8-13 1-6 

Counter 15 6 10 3 0.6034 0.1929 39.66% 7-13 1-7 

Counter 16 11 13 2 0.8143 0.1341 18.57% 11-15 0-4 
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Counter 𝑦𝒊  𝑦𝑖∗̂  𝑠𝑡𝑑(𝑦�̂�)  𝑝𝑖∗̂ 𝑠𝑡𝑑(𝑝𝑖∗̂)  𝑞𝑖∗̂𝑥100%   𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�) 

 [𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�)] − 𝑦𝒊  

Counter 17 13 15 2 0.8484 0.1157 15.16% 13-16 0-3 

Counter 18 3 10 3 0.3776 0.1865 62.24% 6-13 3-10 

Counter 19 3 10 3 0.3544 0.1683 64.56% 7-13 4-10 

Counter 20 7 11 3 0.6443 0.1831 35.57% 8-14 1-7 

Counter 21 10 12 2 0.7844 0.1449 21.56% 10-15 0-5 

Counter 22 14 16 2 0.8652 0.1069 13.48% 14-17 0-3 

Counter 23 7 11 3 0.6487 0.1872 35.13% 8-14 1-7 

Counter 24 3 10 3 0.3707 0.1777 62.93% 6-13 3-10 

Counter 25 6 10 3 0.599 0.1941 40.10% 7-13 1-7 

Counter 26 5 10 3 0.5168 0.1856 48.32% 7-14 2-9 

Counter 27 11 13 2 0.8085 0.1387 19.15% 11-15 0-4 

Counter 28 3 10 3 0.3723 0.1823 62.77% 6-13 3-10 

Counter 29 1 10 3 0.1833 0.1307 81.67% 7-13 6-12 

Counter 30 2 10 3 0.2747 0.1628 72.53% 7-13 5-11 

Counter 31 6 11 3 0.5893 0.186 41.07% 8-14 2-8 

Counter 32 10 13 2 0.7666 0.1514 23.34% 10-15 0-5 

Counter 33 12 14 2 0.8394 0.1216 16.06% 12-16 0-4 

Counter 34 2 10 3 0.2812 0.1589 71.88% 6-13 4-11 

Counter 35 8 11 3 0.6985 0.1715 30.15% 9-14 1-6 

Counter 36 1 10 3 0.1822 0.1252 81.78% 7-13 6-12 

Counter 37 6 10 3 0.5994 0.189 40.06% 7-13 1-7 

Counter 38 4 10 3 0.4421 0.1903 55.79% 7-13 3-9 

Counter 39 1 10 3 0.185 0.1326 81.50% 7-13 6-12 

Counter 40 2 10 3 0.2744 0.1582 72.56% 6-13 4-11 

Counter 41 2 10 3 0.273 0.1582 72.70% 6-13 4-11 

Counter 42 7 11 3 0.661 0.1858 33.90% 8-13 1-6 

Counter 43 2 10 3 0.2775 0.1608 72.25% 7-13 5-11 

Counter 44 7 11 3 0.6493 0.1855 35.07% 8-14 1-7 

Counter 45 2 10 3 0.2743 0.1612 72.57% 7-13 5-11 

Counter 46 2 10 3 0.2821 0.1589 71.79% 6-13 4-11 

Counter 47 8 11 3 0.7136 0.1718 28.64% 9-14 1-6 

Counter 48 1 10 3 0.1833 0.1291 81.67% 7-13 6-12 

Counter 49 4 10 3 0.444 0.1847 55.60% 7-13 3-9 

Counter 50 4 10 3 0.4573 0.1949 54.27% 7-13 3-9 

Counter 51 2 10 3 0.2671 0.1521 73.29% 7-13 5-11 

Counter 52 3 10 3 0.3687 0.1827 63.13% 7-13 4-10 

Counter 53 7 11 3 0.6523 0.1822 34.77% 8-14 1-7 

Counter 54 3 10 3 0.3651 0.1774 63.49% 7-13 4-10 

Counter 55 5 10 3 0.5348 0.19 46.52% 7-13 2-8 

Counter 56 4 10 3 0.4511 0.1943 54.89% 7-13 3-9 

Average 5 11 3 0.4971 0.1639 50.29% 8-14 3-8 

 
From Table 6, we get that the average of the estimators of the actual number of the 

product sales at a counter with the rate of product sales low is ranging between 6-11 
pieces with a gap of 2-7 pieces compared to the number of the product sales listed in 
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the report (obtained from the system). The mean percentage of underreporting counts 
of product sales is 49.20% or ranged from 11.70% to 77.46%. 

Tabel 6: The Estimators of Model Parameter at Counter with The Low Rate of 
Product Sales 

Counter 𝑦𝒊  𝑦𝑖∗̂  𝑠𝑡𝑑(𝑦�̂�)  𝑝𝑖∗̂ 𝑠𝑡𝑑(𝑝𝑖∗̂)  𝑞𝑖∗̂𝑥100%   𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�) 

 [𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�)] − 𝑦𝒊  

Counter 1 1 8 3 0.2313 0.1586 76.87% 5-11 4-10 
Counter 2 5 8 3 0.6114 0.202 38.86% 6-11 1-6 

Counter 3 9 11 2 0.7924 0.1471 20.76% 9-13 0-4 

Counter 4 8 10 2 0.7657 0.1556 23.43% 8-12 0-4 

Counter 5 2 8 3 0.3261 0.181 67.39% 5-11 3-9 

Counter 6 3 8 3 0.444 0.2047 55.60% 5-11 2-8 

Counter 7 8 10 2 0.7593 0.1615 24.07% 8-12 0-4 

Counter 8 3 8 3 0.4362 0.2014 56.38% 5-11 2-8 

Counter 9 4 8 3 0.5295 0.201 47.05% 5-11 1-7 

Counter 10 3 8 3 0.4364 0.1987 56.36% 5-11 2-8 

Counter 11 3 8 3 0.4275 0.195 57.25% 5-11 2-8 

Counter 12 1 8 3 0.2336 0.1632 76.64% 5-11 4-10 

Counter 13 13 14 1 0.8706 0.1068 12.94% 13-16 0-3 

Counter 14 14 15 1 0.883 0.0943 11.70% 14-16 0-2 

Counter 15 4 8 3 0.5293 0.1995 47.07% 5-11 1-7 

Counter 16 3 8 3 0.4364 0.2006 56.36% 5-11 2-8 

Counter 17 4 8 3 0.5256 0.203 47.44% 5-11 1-7 

Counter 18 4 8 3 0.5415 0.1993 45.85% 5-11 1-7 

Counter 19 2 8 3 0.3401 0.1861 65.99% 5-11 3-9 

Counter 20 2 8 3 0.3398 0.1875 66.02% 5-11 3-9 

Counter 21 1 8 3 0.2352 0.1611 76.48% 5-11 4-10 

Counter 22 5 8 3 0.6071 0.1986 39.29% 6-11 1-6 

Counter 23 6 9 2 0.6648 0.1851 33.52% 7-11 1-5 

Counter 24 3 8 3 0.4265 0.1951 57.35% 5-11 2-8 
Counter 25 8 10 2 0.7521 0.1571 24.79% 8-12 0-4 
Counter 26 9 11 2 0.7906 0.1432 20.94% 9-13 0-4 
Counter 27 7 10 2 0.717 0.175 28.30% 7-12 0-5 
Counter 28 3 8 3 0.4355 0.2035 56.45% 5-11 2-8 
Counter 29 6 9 2 0.658 0.1905 34.20% 7-12 1-6 
Counter 30 1 8 3 0.2254 0.1666 77.46% 5-11 4-10 
Counter 31 3 8 3 0.4478 0.2051 55.22% 5-11 2-8 
Counter 32 1 8 3 0.2375 0.1699 76.25% 5-11 4-10 
Counter 33 2 8 3 0.3242 0.184 67.58% 5-11 3-9 
Counter 34 3 8 3 0.4395 0.2014 56.05% 5-11 2-8 
Counter 35 2 8 3 0.3385 0.1894 66.15% 5-11 3-9 
Counter 36 4 8 3 0.5297 0.2061 47.03% 5-11 1-7 
Average 4 9 3 0.5080 0.18 49.20% 6-11 2-7 

 
From Table 7, we get that the average of the estimators of the actual number of the 

product sales at a counter with the rate of product sales very low is ranging between 
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4-13 pieces with a gap of 1-9 pieces compared to the number of the product sales 
listed in the report (obtained from the system). The mean percentage of underreporting 
counts of product sales is 52.88% or ranged from 32.10% to 73.66%. 

Tabel 7: The Estimators of Model Parameter at Counter with The Very Low Rate of 
Product Sales 

Counter  𝑦𝒊  𝑦𝑖∗̂  𝑠𝑡𝑑(𝑦�̂�)  𝑝𝑖∗̂ 𝑠𝑡𝑑(𝑝𝑖∗̂)  𝑞𝑖∗̂𝑥100%   𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�) 

 [𝑦𝑖∗̂ ±
𝑠𝑡𝑑(𝑦�̂�)] − 𝑦𝒊  

Counter 1 1 8 5 0.2634 0.2042 73.66% 3-13 2-12 
Counter 2 6 9 4 0.679 0.2058 32.10% 5-13 0-7 
Average 4 8 4 0.4712 0.205 52.88% 4-13 1-9 

 
6. Conclusion 

The estimation of the parameters of the regression model for underreported counts 
performed through by a Bayesian approach and Markov Chain Monte Carlo simulation 
using Gibbs sampling algorithm, is depend on the determination of burn in period. 
Determination of burn in period or deleting the first B iterations of the algorithm is done 
to reduce or avoid the effect of the initial value of the specified parameter. These initial 
values may affect the posterior summary if they have a huge gap from the highest value 
of the posterior probability. 

Determination of burn in period is done in line with the convergence of algorithm 
conducted through trace plot, autocorrelation plot and ergodic mean plot. The 
determination of burn in period is easier using ergodic mean plot than using the trace 
plot or autocorrelation plot. Ergodic mean plot describes the average simulation values 
on current iteration. Then, the researcher can more easily determine the first B 
iterations to be removed. While the trace plot only illustrates the randomness pattern 
of simulated results and autocorrelation plot only describes the value of autocorrelation 
between successive iterations. After burn in period is determined, the estimated value 
of the underreported model parameters is the average of the simulated sample values 
of each parameter calculated from sample value after burn in period until the last 
iteration. 

The results of estimation clearly showed the percentage of underreporting counts 
is very high, either on the counter whose sales rate is very high, high, low or very low. 
it also showed a gap between undamaged product sales and the actual number. The 
gap is the number of damaged product sales. In order to reduce the risks of the errors 
on the marketing strategies (see Figure 1), these estimation value can be more useful. 
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