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Abstract

This paper introduces the bivariate extension of the amoroso distribution and its density
function is expressed in terms of hyper-geometric function. The standard amoroso
distribution, cumulative distribution functions, conditional distributions, and its moments are
also derived. The Product moments, Co-variance, correlations, and Shannon’s differential
entropy are also shown. Moreover, the generating functions such as moment, Cumulant,
Characteristic functions are expressed in Fox-wright function, and the Survival, hazard, and
Cumulative hazard functions are also computed. The special cases of the bivariate amoroso
distribution are also discussed and nearly 780 bivariate mixtures of distributions can be
derived. Finally, the two-dimensional probability surfaces are visualized for the selected
special cases and we also showed the estimation of parameters by the method of maximum
likelihood approach, and the constrained maximum likelihood approach is also computed
by using Non-linear Programming with a numerical application.

Keywords: amoroso distribution, constrained maximum likelihood approach, Fox-wright
function, hypergeometric function, probability surface parameters.
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Some Preliminaries

Explicit expressions for the PDF of bivariate amoroso distribution and the Calculation of
constants, generating functions and parameter estimation of the distribution involve
several special functions (Prudnikov et al., 1986) & (Gradshteyn & Ryzhik, 2014) and they
are given as follows:

1. The Generalized hyper geometric function of order p and q is defined as

- (ai)k(az)kK(ap)kika

oFo(ana, K a,b,b, K bsx) =Y o

k=0 (bl)k (b2 )k K (bq )k
2. The Gauss hyper geometric function is defined as

2Fl(ai,az;bl,;x)=g;(""1()Ell()az)k i_kl)

3. The Confluent hyper geometric function is defined as

& (2), [xk

1Fl(a1;bl;x):kz;'(bl) F

4. The rising factorial or Pochammer symbol is given as
(a) =a(a+1)(a+2)KK (a+k-1)
5. The integral representation of the Gamma function is defined by

0
r'(a)= j x3 Lo~ X
0
6. The integral representation of the lower incomplete Gamma function is defined by

X
7 (a,bx) = 'fta_le_btdt
0
7. The Binomial expression of the following series is given by

N (n
(1+x)" = > ( jxk
k=0 k
8. The Fox-wright function of order p and q is defined as

pq,{(al,m (8a12) L (ap,Ap),] wr<a1+A\k)r(az+Azk>KF(aw&k)(xkj

X |= —
(b.B) (b,B,) L (b,,B,) ; I (b, +Bk) (b, + Bk )K ['(b, +B.k) | k!
9. The first derivative of the Gamma function is di-gamma function which is given as
d
=—_(logT’
v ()= (logr(x))

10. The first derivative of the hyper-geometric function ,F,_ with respect ‘a,’ is given as

ot () - Srbel s s
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11. The first derivative of the hyper-geometric function ,F, with respect ‘a,’ is given as

o 052 i e 25

12. The first derivative of the hyper-geometric function ,F, with respect ‘b,’ is given as

o5 ) | ) )

13. The first derivative of the hyper-geometric function ,F, with respect ‘b,’ is given as

oFr {a; (1_1;)2 (Xi ;lalf[yi b . jﬂz =§(a)lk k!{(l/ikz i (Xi l;aljﬂlk L_[%}(yb;zazjﬁk J]

14. The first derivative of the hyper-geometric function ,F, with respect ‘«’ is given as

oF. [a; (1_/1/;)2 (xi glaljﬂl [ Y, l;Zaz Jﬂng(‘P(a)(a;lkfl((T+ k))[(l_ﬂ,; - (xi glaijﬂlk [ y b_zaz Jﬂzk

15. The first derivative of the hyper-geometric function ,F, with respect ‘ 5,’ is given as

e (5 05 [ Sl s w5

16. The first derivative of the hyper-geometric function ,F, with respect ‘' 5,’ is given as

a0 o o T )

17. The first derivative of the hyper-geometric function ,F, with respect ‘1’ is given as
F |a: Al [Xi_aifl(yi_az]ﬂz _i 1 _ 2k22k(1+/12) (Xi_aijﬂlk(Yi_azjﬁZk
0" 4 ’(1_/12)2 b, b, s (a)k Kl (/13 —ﬂ,)(l—ﬂ,z)ZK b, b,

1. Introduction to Amoroso Distribution

The Amoroso (generalized gamma, Stacy-Mihram) distribution is a generalized
distribution with four parameters, continuous, univariate, unimodal probability density and
semi-infinite range. The Amoroso distribution was originally developed to model lifetimes.
It occurs as the Weibullization of the standard gamma distribution and, with integer a, in
extreme value statistics. The Amoroso distribution is itself a limiting form of various more
general distributions, most notable the generalized beta and generalized beta prime
distributions. A useful and important property of the Amoroso distribution is that many
common and interesting probability distributions occur as special cases or limits.
Informally, an interesting distribution” is one that has acquired a name, which generally
indicates that the distribution is the solution to one or more interesting problems. This
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provides a convenient method for systemizing a significant fraction of the probability
distributions that are encountered in practice, provides a consistent parameterization for
those distributions, and obviates the need to enumerate the properties (mean, mode,
variance, entropy and so on) of each and every specialization. The Amoroso, gamma
family of distributions are considered to be the generalized family of semi-infinite support
distributions. The applications of the generalized distributions are extensively studied and
the authors shown some of the important and interesting applications are as follows.

1.1 Application of some Generalized Distributions

Moghaddam et al. (2019) argued that a stochastic model of economic exchange, whose
steady-state distribution is a Generalized Beta Prime (also known as GB2), and some
unique properties of the latter, are the reason for GB2’s success in describing
wealth/income distributions. Bhatti et al. (2019) presented a generalized log Burr Il
(GLBIII) distribution developed on the basis of a generalized log Pearson differential
equation (GLPE). Oladipo (2019) investigated the polynomials whose coefficients are
generalized distribution. Clementi et al. (2008) proposed the k-generalized distribution as
a model for describing the distribution and dispersion of income within a population.
Ramos & Louzada (2018) presented a Bayesian reference analysis for the generalized
gamma distribution by using a reference prior, which has important properties such as
one-to-one invariance under reparametrization, consistent marginalization, consistent
sampling and leads to a proper posterior density. Tripathi et al., (2018) introduced a
generalized inverse x-gamma distribution (GIXGD) as the generalized version of the
inverse x-gamma distribution. The proposed model exhibits the pattern of non-monotone
hazard rate and belongs to family of positively skewed models. Mansoor et al. (2019)
introduced a three-parameter extension of the exponential distribution which contains
sub-models as the exponential, logistic-exponential and Marshall-Olkin exponential
distributions. The Generalized gamma (GG) distribution plays an important role in
statistical analysis. For this distribution, Ramos et al. (2017) derived non-informative
priors using formal rules, such as Jeffreys prior, maximal data information prior and
reference priors. Progri (2016) discussed the exponential generalized Beta distribution
(EGBD). For the EGBD model the author provided the closed form expression of the
cumulative distribution function (cdf), statistics for special cases and the computation of
the mean and variance for the general case. VedoVatto et al. (2016) introduced a new
four-parameter model called the Exponentiated Generalized Nadarajah-Haghighi
(EGNH) distribution in order to verify this requirement. They proved that its hazard rate
function can be constant, decreasing, increasing, upside-down bathtub and bathtub-
shape. Merovci (2014) discussed the generalized Rayleigh distribution using the
guadratic rank transmutation map studied by Shaw et al. to develop a transmuted
generalized Rayleigh distribution. Potdar & Shirke (2013) introduced a generalized
inverted scale family of distributions. Cordeiro et al. (2012) proposed and studied the
Kumaraswamy generalized half-normal distribution for modeling skewed positive data.
The half-normal and generalized half-normal distributions are special cases of the new
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model. Hamedani (2011) presented the characterizations of a continuous univariate
distribution due to Shakil, Kibria and Singh (SKS), based on a simple relationship between
two truncated moments. And also pointed out that some special cases of the SKS
distribution can be characterized based on the hazard function. Nassar & Nada (2011)
proposed a new distribution called the beta-generalized Pareto. Several properties of this
distribution are presented. Abd-Elfattah et al. (2010) obtained the tables of critical values
of modified Kolmogorov-Smirnov (KS) test, Cramer-Von Mises (CVM) test, Anderson-
Darling (AD) and Watson test for generalized Frechet distribution with unknown
parameters. The sampling distributions for these tests statistics are investigated. Here,
they used Monte Carlo and Pearson system techniques to create tables of critical values
for such situations. Scott et al. (2011) demonstrated a recursive method for obtaining the
moments of the generalized hyperbolic distribution. The method is readily programmable
for numerical evaluation of moments. For low order moments we also give an alternative
derivation of the moments of the generalized hyperbolic distribution. Here, these versatile
applications of the generalized distributions motivated the authors to extend the univariate
Amoroso distribution to its bivariate case and the characteristics and properties of the
proposed distribution are extensively studied in the following sections.

1.2 Bivariate Amoroso distribution
Definition 1.1: Let X and Y be the random variables followed Bivariate Amoroso
distribution with location(a,,a,), scale (b,b,) and shape (a,f,,) parameters with a

dependency co-efficient (1), then the density function of the distribution (Amoroso &
Mignotte, 1996) is defined as

(22 jﬁl[ y-a, J )

|ﬂ1||ﬂ2| b, b,

BT () (52

where &, < X<,8, <Yy <oo,a,a,b,b,,a B,p,>0-1<A<+1l and ,F( ) is the hyper
geometric function respectively.

-(1.1)

fX,Y (X7 Y) =

Theorem 1.2: If Z =(X-a)/b and Z,=(Y-a,)/b, then the Bivariate Amoroso

distribution was transformed into standard Bivariate Amoroso distribution with shape
(a,p.,5,) parameters with a dependency co-efficient (1),then it's density function is

given as
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(ZX )aﬂl—l ( Zy )aﬂz—l e_l 22 ((Z )/}l ( )ﬂzj
f, (z ,Z ): Al -(1.2)
X &Y X y rz (0{) 1_12 a XOFl A Bo

Theorem 1.3: The cumulative distribution function of the Bivariate Amoroso distribution
is defined by

X ([ ) ( (mam)),
Fev (X Y)= ( )(1 iz)asz; [( /12)2k7{ K, 1- 12 }7[ K, 112 N
(1.3)

Where ;/( ) is the lower incomplete Gamma function.

Proof: Let the cumulative distribution function of a bivariate distribution is

FKY(KY)=Iif(LLV)dUdV

e

plal | B b,
FX,Y(X’y): -
AT\ of, 2 fooa )
U2y h b,

By Setting z, = ((U - al)/bl) ,=((V—a,)/b, ) and expand the generalized hyper-
geometric function ,F, ( ),then the integral expression of (1.4) becomes

1 — [ Prr ((x—a]vbl)“ a (em)®

- DX vl U <>d}

duaV - (1.4)

r?(a)(1-2%)" = (@) k!

Now integrate (1.4), then the final form of CDF as

- 1 o1 (oo [ ((x-a)m)t ] (v
F”(’y)rz(a)(l42)“§(a)kk![(1/12)2ky[ © H ©TR ]]

where y( ) is the lower incomplete Gamma function.

2. Marginal and Conditional distributions

Theorem 2.1: The marginal distribution of X for (1.1) is the univariate amoroso
distribution and it's density function is given as
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afy -1 X—ay AL
f (X): |'81| [X_aij e{le -
X
bI'(ax)\ b
(2.1)
where &, < X<m,a,,b,a, 4, >0
Proof: The marginal distribution of Bivariate Amoroso distribution of X is derived as
f, (x)=j foy (X, y)dy

a

(x3 J“ﬂ” (222 jﬁ =GR
|ﬂ1||:82| f by b, d
= z y  -(22)
Db, (@) (- 4) j ‘o F| i [X_aijﬁl[y—azjﬂz
o ’(1—22)2 b, b,

From (2.2) set S =(y—a,)/b,,expand the hyper-geometric function and integrate it, then
the final result is found to be
a1 (x—a Yt
f (X)= A [X_%j ei[blj
X
b () b
where 8, < X<o,a,,b,a, [ >0

Theorem 2.2: The marginal distribution of Y for (1.1) is the univariate amoroso
distribution and it's density function is given as

af>-1 y-a, |
Bl (y-a *[T)
f — | 2 e 2 -(2.3
Sy o s (23)
where &, < X <o0,a,,b,,a, 5, >0
Proof: The marginal distribution of Bivariate Amoroso distribution of Y is computed as
f, (y) =_[ foy (X y)dx

il

( ‘a, jﬂl[ yoa, jﬁ )

oc b -
|ﬂ1||ﬂ)2| I b, 2 dx (2-4)

T el

From (2.4) similarly set S = (x—az)/b2 ,expand the hyper-geometric function and integrate
it, then the final result is found to be

afy- —a ]
f,(y)= 1 15| y=-2 ﬁle’[yT]
vY)=

I'(a)|b, |\ b,

where a, < X<o,a,,b,,a,5,>0
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Theorem 2.3: The Probability density function of Conditional Amoroso distribution of X
onY is

a4

b ()i wﬁ{a;(lf;)z[X;f“)ﬂl[y;ﬂﬁz]

where 8, < X<,a,,b,a,, >0

e (xy)

Proof: It is obtained from the fact f,, (x/y)= ()
y
Y

Theorem 2.4: The Probability density function of Conditional Amoroso distribution of Y
on X is

- (2.5)

( y-a, J )

|ﬂ2| b,
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where &, < X <,a,,b,,a, 5, >0

fry (%)
fx (x)

3. Constants of Conditional and Bivariate Amoroso distribution

fyix (y/X): -(26)

Proof: It is obtained from f,,, (y/x)=

Theorem 3.1: The r'" order moment of the Conditional Amoroso distribution of X on Y
is given as

sater J(alresmm
ra) & Xlﬁ{a+(m,ﬂ1),a;£(y;—j‘zjﬁzJ(bl/ai(l—%)“za)m

Where ,F,( ) is the confluent hyper geometric function.

EX/Y(Xr/y) i (31)

Proof: The r'"" moment of a conditional distribution is

E, (xr/y):ifxr fu (X7y)dx

El
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e ber e
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From (3.2), Set S :((x—al)/bl)ﬁ1 and the write the hyper geometric function in series
expansion form, and then the final result of the integration is found to be

et [0 rtasmin)

E, (xf/y)=uz 5 - (3-3)
r(a) X, F (Z+(m/ﬂ) 22 y_az (bllai(l—ﬂ,z)ﬂ[&)m
ey b,
From (3.3), If r=1, 2, 3, 4 then the following Conditional moments are given as
f;(yEaZ]ﬂz . (;]F(aJr(m/ﬁl)) 3.4
Exn (1Y) = ST Zc:; A? (y-a & vp\M ~(34)
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2
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xF{a+(m/ﬁl) ﬁ( - ] J(bl/ai(l—/i) )
3
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Theorem 3.2: The " conditional moment of the Conditional Amoroso distribution of Y on
X is
/2 ' I'(a+(m/
ﬁ[ﬂ : (m] (e+(m/ 2)
EY/X (yr /X) z - (3-8)

\/
3

2 P g \"
0 xlFl[a+(m/ﬂ2),a;1/17(xblaij J(bzlaz(lﬂz) ,3)

Where ,F,( ) is the confluent hyper geometric function.
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Proof: The r'"conditional moment of a distribution is

Ey/x (yr /X)= j y % (y 1 x)dy

ay

y [ﬂ]aﬂzl 61112[[ CS ]ﬁz v {xblaljﬁl]

e R
) X°Fl{a;(1—/1/12)z(xb1alj (ygzazj }

From (3.9), Set S=((y—a )/b) ,write the hyper geometric functions in series
expansion form and integrate it, then the final result is found to be

aefiﬂ%f [ Jrlasmis)

- (3.9)

E,,. (y/ r - (3.10)
Y/X(y X) mzzo 7 (x-a A .
XlFl 0[+(m/ﬂ2),0(,1_p2 T (bzlaz(l—p ) )
From (3.10), If r =1, 2, 3, 4 then the following Conditional moments are given as
,L[if [;]F(our(m/ B,))
E (y/%)=2 - Z - (3.11)
( ) m=0 . A7 X—a & VA \™
U e Sl CEC
2 7&[%]/72 2 (;JF(&+(m/ﬂ2))
B (¥* /%)= 2 > ) A . - (3.12)
M(a) Xﬁ[m(m, ﬂz*“ﬁ%{%} ](bz,az(l_ﬂz)l,ﬁz)
Sl Jrterma)
£ (yix)=2 "y - (3.13)
Y /X T a) m:O . /12 X-a, B U "
XlFl a+(m/ﬂ2),a,ﬁ T (bzlaz(l—/i ) )
aier (et
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EY/X(y /X) r(a) mzzo ' /12 X—al A , g m
x,F, o¢+(m//32),05,1_/12 T (bzlaz(l—/l) )

Theorem 3.3: If X and Y are jointly distributed according to (1.1) then the product
moment is
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q
EXY(x”‘y”)=—a1ma2n(1_ﬂ ) 3 (bl(l—ﬁz)wl/ai)p(bz(l—ﬂ,z)%/az)q p#q
F(a+(p!A))T(a+(al5,))
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Where ,F,( ) is the Gauss hyper geometric function.
Proof: The results follow on writing

[ X—a, ]aﬁll { y-a, ]aﬁz B e’ﬁ[[%]ﬁl {%]MJ

it BByl 8 U
b, (@) (1-47) 2 (x=a)'(y-a,)"
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Corollary-1. If X and Y are jointly distributed according to (1.1) then the first order
Product moment, Co-variance and Correlation Co-efficient between two Amoroso
variables are given as

a2, (1-p%).F; (a'ﬂz)+(b1az)(l—ﬂz)“’””1Fo(a+(1/ﬂ1);ﬂz) - (3.16)
Ew () =| +(0,a)(1-22)"" R (a+(1/ 8,):47)

b,b, o ot 2\ B)+HU )41
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+(albz)[(1 a2y F(a+(1/ﬁz);ﬂz)—WJ - (3.17)
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a2, ((1-4) Fy (& 4°) 1) +(ab, )[(1 7" (a+(1/ﬁz);12)_F(“;((i’)ﬁz))]
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Where -1< p,, (x,y)<+1 and ,F( ),,F( ) are the hyper-geometric and Gauss hyper
geometric function respectively.

Theorem 3.4: The Joint Shannon’s differential entropy of the bivariate Amoroso
distribution is

h:ia}j (b,b,,a, B, 3, ) - (3.19)
where "
o, (b,b,, @, B, B,,2) =~log All5 - - (3.20)
b, (a)(1-4%)

a+k)
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1

(12)kj - (3.21)

a)B(bl,bz,a,,Bl,ﬂz,/l):—(aﬂz_11)3(1_/12) [Iog(l—iz) (@ /12)+i _‘Hk)( Z)kJ - (3.22)

2 k=0

o, (b.b, e, B, B, A)=2a(1- %) Ry (@ +1,4°) - (3.23)

___lalal i

ML kol

- (3.24)

a)s(bllbz’a’ﬂ1'ﬂ2'/1)= dx dy

and ,F,( ) ,¥( ) are the hyper geometric and di-gamma function respectively.
Proof: It is found from

h :-ﬁlog( frv (% ¥)) iy (X, y) dx dy

8 &
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R i) e

1l [aij[yajﬂl wll [QJ[Ya]
b (a)(1-22)°\ B b eyl ) U

h:iwj (b.b,, . B, B, A) - (3.25)

From (3.25), for the auxiliary function a; (b,,b,, @, B, 5,, 1), it is not possible to derive an
explicit expression to the integral, due to its non-convergence.

2

4. Generating functions
Theorem 4.1: The Moment generating function of the bivariate Amoroso distribution is
k

(#°) v,
_ g2\  patitaty | 2 P k,1 ‘bt (1— 12 J -
(1 A ) e Z (a)kk!l 0|:(O‘+ /ﬁl) bll( A ) 4.1)
k=0
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Where I'( )and ,¥,( ) are the Gamma and Fox-Wright function respectively.
Proof: Let the moment generating function of a bivariate distribution is given as

MX,Y (tl’tZ): Fz(a)

o2 [z =S
LALTRy B b - (4.2)
v a dx dy
blbzrz(a)(l—ﬁ) «::[5[ £l o 22 [X—aijﬂl y_azjﬁz

01 ’(1_/12)2 b b

By SettingU=((x—a1)/bl)ﬂl,v=((y—a2)/b2)ﬂ1 and expand the exponential, hyper-
geometric function ,F,( ),then the final integration result of (4.2) is found to be

2\% at+ant, </12)k o+ ) 2 up,
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Theorem 4.2: The Cumulant of the bivariate Amoroso distribution is

22)
» u 0[(a+k,1/ﬂ1);blt1(1—/12)m} - (4.3)
Cyy (t.t,)=alog(1- ) +at, +a,t,~2logT (a Z

k=0

[(a+k,1//32);b2t2 (1_/12)%}

Proof: It is found from c_, (t,t,)=logM,, (t,.t,)

Theorem 4.3: The Characteristic function of the bivariate Amoroso distribution is

. (22) ) -
_ 12 el(a1t1+a2t2) " ¥, 06+k, / 1 i ~
czsx,v(ti,t2)=(l lr)z(a) 3| (@) k! o[ (a+katl )by (1-27)"

k=0
xl‘PO[(a 1,1/ B,)sibt, (1—12)%}
Where I'( )and ,¥,( ) are the Gamma and Fox-Wright function with complex arguments

respectively.
Proof: Let the Characteristic function of a bivariate distribution is given as

Bes (1) = [ € 1, , (x,y)dxdy
H(_alj(y_J[UU]

_|sli8l ﬁ b, b,
SR TT [, & et
IR b,

For (4.5), it is evident from theorem 4.2, the integration is obvious and final expression
Cf is given as

- (4.4)

-(4.5
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¢X,Y (tl’tZ):(l l]—‘)z(a) Z (a)kk! N |:( ) bltl( ) }

<, [(a +k1/ B,)sibt, (1- 12)””2}

Theorem 4.4: The survival function of bivariate Amoroso distribution is

A A - (4.6)
PSR S S SN (RN DO (G L1:Y 0 DO (Vs L1
SX,Y( ’y)—l 1"2(0!)(1lz)a;(a)kk![(lﬁz)ﬂ( 7[ k: 1_/12 ]7[ k, 1_/12 J]

where ;/( ) is the lower incomplete Gamma function.

Proof: It is found from the following fact
Syy (X y)=1-F,, (xy)
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Theorem 4.5: The hazard function of the bivariate Amoroso distribution is
A 4 A ,
1818, [x—aijaﬂ1 [y_azjaﬂz e“[[m] {YT] J Ely 2 [x—aijﬂl[y—azjﬂ
blbzl"z(a)(l—/lz)a by b, 01 (1—/12)2 b b,
hx,v(X’y): e | B I 3
L1 5 1 [ p )M[“*k'((xflzbl) ]{Mk’((y_laj)ﬁ ) ]]

r(a )(1 /12)“ = (a) k!
Proof: It is found from

- (4.7)

f X, Y
hyy (X Y) :% and S, (x,y)=1-F, (x,y)
XY 1

Theorem 4.6: The Cumulative hazard function of the bivariate Amoroso distribution is

o e e [ (el [ (s - (4.8)
Hx,v( ,)’)— Ig[l rz(a)(l—ﬂ,z)akzl;(a)kk![(l—ﬂ,z)ﬂ(y[ k, T }/[ K, 7 JH

Proof: Let the Cumulative hazard function of a bivariate distribution is given as
Hyy (X,y)=—log(1-Fy, (X, Y))

:—Iog(sxlY (xy))

. e ((x-a)/b)" ((y-a,)/b,)"
H,,(xy)=-log|1- a )(1 ;ﬁ)“% [( - Zky{a+k,TJ7{a+k,7ﬂ

5. Some Special Cases

Result 5.1: From (1.1) and if the dependency co-efficient is zero(l = 0), then the density
function of bivariate amoroso distribution is the product of two densities of univariate
amoroso distributions.

Result 5.2 — Table in Appendix 1 shows the special cases of Bivariate Amoroso
distribution from (1.1) for different settings of parameters are given.

Result 5.3: From the special cases of Result (5.2) by shifting the Location, Scale and
Shape parameters we can easily derive (420]=780 mixtures of bivariate distributions.
Result 5.4: The probability surfaces of the special cases of bivariate standard Amoroso

distribution for the selected values of parameters are visualized in Appendix 2.

6. Parameter estimation

Result 6.1: We consider the estimation by the method of maximum likelihood. The log-
likelihood function for a random sample X, X,,X;,K , X, ;,X, from (1.1)is

' p-11 n
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gt nguitt] |
IOgL(a1:a2’b1’b2va|ﬂ1:ﬂ21/1)= 2 _( . )
e [ 2 (x-af(y-a )] 1 znlxi_a1ﬂ1+zn: y-a )"
+§l: 0g,F, al(l_iz)z b b, 12| 4 b, 27y,
The first order derivatives of (6.1) with respect to eight parameters are
E {a' A (Xi_%Jﬂl[yi_azJﬁz
0 i) | 2\? b
dlog L (1 . (1-2)\ b 2 1 & 1
ol ﬂl_l)g(xi-ai}; el A (x-a ) (y-a)" Tk Xi—aj ©2
w a’(l—zz)z[ b, j[ b, ]
F [0{' A [Xi_‘%]ﬂl[yi_az]ﬁz
0" yap)| 2)\? b
ologL 4 1 d (1—1) b 2 1 3 - (6.3)
oa, __( ﬂz‘l);[yi_azj"'; =l 22 [Xi_aijf)‘l(yi_az b2 _1—/12; y,— 4,
0'1 ’(1_12)2 b1 b2
F {a' A (X,—aljﬂl(y,—azjﬁzl
alogL:_ﬂ_n((zﬂl—l)_l_Z 1() (1—12)2 b, b, N B, Zﬂl[xi_aljﬁl_(GA)
o * * "R e a (Xi—aijﬂl(yi—azjﬂz b(1-2°) = b
0"1 ’(1_12)2 bl b2
oFI [0!; & Z(Xl_alJﬂl(yu_az]ﬂZ}
ologL _ nap, < A " B : Z":(yi—f%}ﬂz-(a_m
o o Fla: A [Xi—aif(yi—az]ﬁz b, (1-2 )i:1 b,
01 ’(1_12)2 bl b2
_2n\P(a)—nlog(l—ﬂz)+ﬂlglog[xi;laij+ﬂ2izzlllog[yig2a2}
sogl | | ¢ La. 2 {aij(y” - (66)
= LY e T (12 a2)? b,
oa 3 (1-22) 0 b
oy 2 B P2
R < [Xi_aij [yi_azj
( (1-22)°\ b b,
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g
n(abs(L4)) & [X.—ai}_z”: o (1—12)2 by b,
ologL _ 1A i-L = F{a' 22 {Xlalr[ylazjﬁz} - (6.7)
% AN

ologL _ |ﬁz| =L i=L El o 22 (Xi _alJﬂl[yi _a, j/fz _ (6.9)
op, U=l b b,

and

dlogL 22 i oFl;A-)[ai(l_iz)z(Xit;aijﬂl[yit;az]h] 1 [n[x'_aljﬂ:n[u]ﬂz} - (6.10)

o 2|4 ) p m) | 12| 4
h Fla A [Xi_a'lj [Yi_azj h

0'1 1 22 b

(1-2%) by )

Setting these expressions to zero and solving them simultaneously yields the maximum
likelihood estimates of the eight parameters.

Result 6.2: As a second approach, the authors realized that the computational complexity
of the maximum likelihood estimation of the proposed distribution is Painstaking due to
the high non-linearity of parameters and the involvement of special functions. Hence they
moved to the Non-linear programming approach by adopting Constrained Maximum
likelihood method to estimate the parameters of the Bivariate Amoroso distribution and
the idea is to Maximizing the log-likelihood function from (6.1) under some restriction and
parameter constraints and it given as follows:
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|ﬂ1”ﬂ2| . [Xi_%] \ {yi_azj
! = )Y
nOg[blbzl“z(a)(l—/lz)a}r(aﬂl 1) log ) +(ap, ~1) ) log -
Max(logL (a,,a,.b,b,.. 8, 5,.4)) = -(6.10)

el )

Subject to the constraints

, BIAL |, s 05100l 572 s (s -1 toal i 2
N S R N O

el O o s

a,a,,b,b,a,8,5,20
-1<A<+1

7. Application

In this Section, we now illustrate an application of fitting the Bivariate Amoroso distribution
for the 4 variables namely Sepal length (X,), Sepal Width (x,), Petal length (Xx,), petal
width(x,) (Plants of Iris Setosa, Versicolour, Virginica in cms) with a random sample size
of (n=30).The variables are collected from the Database namely Iris Plants data(1936)
and the information regarding the databases are clearly given in the references. The
authors realized the computational difficulties in the classical unconstrained Maximum
likelihood method and hence they adopted Non-linear programming approach to estimate
the parameters by using the constrained Maximum likelihood method with the help of
Optimization Module in the best known Mathematical Software Maple version 18 and the
estimated results of Parameters with a decimal approximation are tabulated in Table 1
and the fitted Probability Surface are visualized in Figure 1.

%) *.%,)

Figure 1: Fitted Probability Surface of the Bivariate Amoroso distribution
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Table 1: Parameter estimates of Bivariate Amoroso distribution.

Constrained Maximum Likelihood estimates

Parameters Maximized
. Location Scale Shape DE  Log-
Blv_arlate likelihood
Variables e &t L Bt & At B, 3
* X, X, - - - - - - - - -
* XX, - - - - - - - - -
X Xy 1.2341 1.2651 1.6535 0.4009 1 049473 1 0 -0.000316
* X, X, - - - - - - - - -
Xy X, 1.2177 1.2156 1.3171 0.62520 1 0.92535 1 0 -0.0006277
* X5 X, - - - - - - - - -
* Optimal Solutions not attained DE- Dependency Co-efficient

8. Conclusion

This paper proposed a bivariate extension of the univariate amoroso distribution and the
characteristics of the bivariate distribution are extensively studied. Usually, several
univariate distributions are extended to the bivariate case and the extension of
generalized distributions to the bivariate cases are rarely touched. Moreover, the
maximum likelihood estimation of the parameters of bivariate amoroso distribution is also
discussed and the computational complexity of the parameters may reduce the
practicality and application of this distribution. Finally, it's multivariate generalization leads
to arise different family of generalized distributions and the authors left the computational
complexity of parameters in the unconstrained maximum likelihood estimation of the
proposed distribution for future work.
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APPENDIX 1
Table 2: Special cases of Bivariate Amoroso distribution.
Parameters
Bivariate Location Scale Shape
Distributions a a, b, b, a B B,
1 Stacy 0 0 b, b, o i A
2 Half-lej)gwgrential a, a, b1 b2 1/ IB IB ﬂ
3 ggﬁ:ﬂ:ﬁ; 8 & w, [ n'h o, /' n B P,
4 Fisher tippet q, a, w, w, 1 ,31 ﬂz
5 GeF”r:ﬁZted a, a, w, I A w, I n'’ n <0 <0
6 Frechet q, a, @, w, 1 <0 <0
7 Scalec(i:-r:?verse 0 0 1/ 26012 1/ szz k/2 2 2
8 Inverse chi 0 0 1/2 1/2 k/2 -2 -2
9 Inverse Rayleigh 0 0 1/2 1/2 1 -2 -2
10 Pearson Type V q, a, b1 b2 o -1 -1
11 Inverse Gamma 0 0 b1 b2 (24 -1 -1
12 SEeese 0 o0 1/ 2w, 1/ 2w, k/2 -1 g
I 1/2 1/2 k/2 1 g
14 Levy a a, 12 w, 2 1/2 -1 -1
15 exponenti 4 b, b, * 5 !
16 Pearson Type Il q, a, b1 b2 o 1 1
17 Gamma 0 0 b, b, a 1 1
18 Erlang 0 0 0> 0> n 1 1
19  Standard Gamma 0 0 1 1 o 1 1
20 SR o o 20, 20, k/2 1 1
21 Chi-square 0 0 2 2 k/2 1 1
22 Exponential q, a, b1 bz 1 1 1
23 Wien 0 0 b, b, 4 1 1
24 Hohlfeld 0 0 b, b, 2/3 3/2 3/2
25 Nakagami q, a, b1 b2 (24 2 2
26 Scaled Chi 0 0 20, 2w, k/2 2 2
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Parameters
Bivariate Location Scale Shape
Distributions a a, b, b, o B B,
27 Chi 0 0 2 2 k/2 2 2
28 Half normal 0 0 2@1 2a)2 1/2 2 2
29 Rayleigh 0 0 20, 20, 1 2 2
Maxwell-
30 Boltzmann 0 0 20)1 2(()2 3/2 2 2
31 Wilson- Hilferty 0 0 b, b, a 3 3
Generalized 1B 1B,
32 Weibul a, a, @, /n w,In n >0 >0
33 Weibul a a, 1) o, 1 >0 >0
34 Pseudo-Weibull =Y a, W, w, 1+1/ 8 >0 >0
Stretched
35 exponential 0 0 bl bz 1 >0 >0
36 Jeffreys 0 0 b, b, a 0 0
37 log-gamma a a b b o lim lim
99 1 2 1 2 Bi—® Bo—
38 Power Law a, a, b, b, 51(1-5) llﬁlgl /!;an
X 2 lim lim
39 log-normal a, a, b1 b2 1/ (éﬂ) fioso Frosco
40 Normal a a, b1 b2 lim 1 1
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14. Bivariate Standard Levy distribution

(e=1/2p; =B, =-1,2=05) (a=1/2,, =B, =-1,2=-05)
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22. Bivariate Standard Exponential distribution 23. Bivariate Standard Wien distribution 24. Bivariate Standard Hohlfeld distribution
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28. Bivariate Standard Half-normal distribution 29. Bivariate Standard Rayleigh distribution 30. Bivariate Standard Maxwell-Boltzmann distribution

(@128, =B, =2.1=05 SRR s
5 ) (@12, =p,=2.1=-05) (@18, =B,=2.2=05) (@=1.8,=,=2.4=-05) (@320, =,=2.1=05) (GRa0=0=212:03)

Figs

Fg13 Figld

283



