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Abstract 

 East Java has shown strong economic growth, which negatively affects its 

environmental quality. Analysis of the functional relationship between economic growth 

and environmental quality is important to direct the growth without further deteriorate the 

environmental quality in this area. It is assumed that growth produces some externalities 

on environmental quality. The spread of technological information, economic 

productivity, population growth or investment, can be the source of the growth 

externalities. The objective of this study is to test the significance of the involved growth 

externalities on East Java’s environmental quality. Using spatial data, the externalities 

are accommodated in a spatial version of the STIRPAT model. It is estimated using per 

city/regency 2015 data. The analysis indicates that local density, local agricultural 

productivity, neighboring density, and neighboring mining activity significantly affect the 

local environmental quality. The latter two are the main sources of the growth 

externalities.  
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1. Background and Objectives of the Study 

Strong economic growth is a catalyst for regional development. Unfortunately, the 

growth invites some negative consequences for the quality of environment. Several 

studies on environmental economics have explored the functional relationship between 

economic growth and environmental quality. The form of the relationship serves as a 

basis to choose which factors can be controlled or directed, such that the growth can 

be maintained without further deteriorate the environmental quality.  

 Recent studies (Ertur & Koch, 2007; Fingleton & López-Bazo, 2006; Tian et al., 

2010) indicate that the economic performance of one region is partly affected by the 

economic performance and social condition of its surrounding reigions. This 

interdependence implies that the local characteristic is not the only factor that 

determines regional economic activity. It depends also on the characteristics and the 

activities of the nearby regions. In that case, the activities affect the local as well as the 

neighbouring regions environmental quality. It is an indication of externalities created 

by economic growth. The increase in population size, productivity, and investment or 

the spread of technological information are equally possible to be the source of the 

growth externalities. 

East Java, is one of Indonesia’s provinces which performs a steady and strong 

economic growth.  In the fourth quartal of 2017, its economic growth is above the 

national economic growth (BI, 2017). The economic structure has been dominated by 

agriculture (forestry and fishery), manufacturing and wholesale – retail trade (BPS, 

2017). The province consists of 38 cities/regencies. The interaction between those 

cities/regencies depends on their geographical location and condition. Nearby 

cities/regencies, due to their similar geographical conditions, have similar economic 

activities (see Figure 1). The western part of the province is mountain area with mining 

potential, the fertile central and southern areas are dedicated to agriculture, whereas 

the majority of industrial activities are located in the low region in the north. The growth 

invites some consequences on environmental quality. In 2016, the index of East Java’s 

environmental quality is 58.98 (100 for perfect quality), which is below the national 

quality index of 65.73 (KLH, 2016).  

 

 

Figure 1: Map of dominant economic activity of cities/regencies in East Java (based 

on each city/regency’s GDP by Sector 2015). 
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The relation between environmental quality and human activity is defined by IPAT 

equation (Ehrlich & Holdren, 1971). The equation defines that environmental quality is 

the product of Population size, Affluence, and Technology (𝐼 = 𝑃 × 𝐴 × 𝑇). Affluence 

can be represented by consumption or production. Since it is an identity (𝑇 =

𝐼/(𝑃 × 𝐴)), it will be useless for measuring the magnitude of the effect of every factor 

on the environmental quality or testing its significance. For that purpose, York et al. 

(2003) develop a stochastic version of the equation, namely STIRPAT (Stochastic 

Impacts by Regression on Population, Affluence, and Technology). In this model, 

environmental quality is a function of Population size, Affluence (economic 

productivity) and Technology. Each model’s parameters represent the magnitude of 

the effect of each factor on environmental quality. Within the context of econometrics, 

the model’s parameters are estimated and tested for their significance.  

Several studies analysed the effect of human activities (e.g. population size and 

structure, GDP, and consumption) on the environmental quality based on the STIRPAT 

model. Shahbaz et al. (2015), Zhu & Peng (2012) specifically estimated the model’s 

parameters using time series data. The use of time series data mostly emphasizes the 

dynamic relationship between human activities and environmental quality. However, 

since the environmental quality naturally varies or shows a certain pattern across 

locations, extending the observation to more than one location will provide additional 

information about location variability or spatial pattern of the environmental quality. 

Time series of environmental quality across locations can be treated as a set of panel 

data (see Bargaoui et al. (2014) or Liddle (2013)), in which the causal relationship 

between the human activities and the environmental quality is analyzed within the 

setting of panel model. In the panel model, the estimated parameters will be adjusted 

for the possible difference characteristic among locations. But since the panel model 

does not explicitly use the spatial configuration of the observed locations, the causal 

relationship only holds locally. Wang et al. (2016) start to attach a spatial reference to 

the observed CO2 emission of every province in China from 1995 to 2011. It is used 

only to calculate Moran’s I statistics to test the significance of spatial autocorrelation of 

CO2 emission among the China’s 30 provinces. It is not utilized to capture the spatial 

dependence of CO2 emission in the model. Thus even though the test confirm that the 

CO2 emissions are spatially auto correlated across provinces, their developed model 

is not capable to capture the effect of one province’s activity to the CO2 emission of its 

nearby location. 

The importance of spatial dimensions in environmental studies has been discussed 

by some authors (see Anselin (2001); Bockstael (1996)). The environmental quality in 

itself naturally has a spatial pattern (e.g. the spread of contaminated water or the 

diffusion of air pollution. Furthermore, it is common that regions interact with each 

other. They trade, exchange labor and technology, or expand capital. Ertur & Koch 

(2007) define this phenomenon as growth externalities. The nearby regions naturally 

will have similar economic activities leading to a more intense interaction, such that it 

is plausible to assume that they have suffered similar environmental problems. It would 

create a more apparent spatial pattern of the environmental quality, which is reflected 

by the significant spatial autocorrelation of the chosen indicator of environmental 
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quality. Regardless of the natural spatial pattern, Anselin (2001) points out other 

problems in most of the environment studies, which can be settled in the spatial 

modeling framework. It is the need to combine data from different sources based on 

different sample designs, such that the scale mismatch is unavoidable. The indicator 

of environment quality (i.e. carbon emission) is measured in several locations as point 

data, whereas the economic indicators are commonly presented as regional data. As 

a consequence the observations tend to show spatial dependencies or spatial 

heterogeneity, which needs to be accommodated in the modeling strategy.  

More recent studies have implemented the spatial modeling framework for different 

purposes. Some focus on the hypothesis regarding the existence of the inverted U – 

shape of Environmental Kuznets Curve (EKC) using spatial econometrics model (Hao 

et al., 2018; W. Wang & Yu, 2015). They accommodate the spatial dependency in the 

model in order to have more meaningful estimated parameters of EKC, since applying 

a classic linear regression would only lead to the violation of independence errors. 

Some studies (Roberts, 2011; Videras, 2014) also include the spatial dimension to 

develop their STIRPAT model. The spatial version of STIRPAT in Roberts (2011) takes 

into account the spatial dependencies among the environmental impact as well as the 

spatial dependencies among the disturbance. It is estimated based on data at a lower 

administrative level as a unit of study (local) instead of data at the national level 

(global). The study focuses on showing that the relation between the environmental 

impact and its determining factors at the local level might be different from the relation 

at the global level. Whereas Videras (2014) uses a geographically weighted regression 

(GWR) to explore the issue of spatial heterogeneity in the STIRPAT framework. When 

the spatial data are available in a certain period of time (i.e. monthly, yearly), a spatial 

panel version of STIRPAT can be estimated. This approach is used by Liu et al. (2014), 

based on the spatial (provincial) panel data of carbon emissions (and it predictors) from 

2010 – 2006. Within this setting, the spatial dependencies and heterogeneity are 

accommodated in the model, such that the effect of the predictors on the carbon 

emissions can be estimated more efficiently.  

In general, the accommodation of the spatial dimension in those studies has been 

triggered by various research questions. However, they have not fully explored the 

nature of the involved growth externalities and how these externalities affect 

environmental quality. Geographically, the externalities’ effect is captured by the 

spatial pattern (in terms of the spatial autocorrelation) of the environmental impact. 

Within the context of spatial modeling, the nature of externalities can be determined by 

analyzing which factors of the surrounding locations that significantly affect the 

environmental quality. It can be the neighbourhood environmental condition, 

neighbourhood growth, and productivity or the neighbourhood unobserved factors. The 

similar spatial pattern between the environmental quality and the clusters of economic 

activities indicates that the economic activities of the neighbouring locations play a 

certain role in shaping the local environmental quality.  

For the case of East Java’s environmental quality, Fitriani & Syukrilla (2017) have 

accommodated the externalities by estimating a spatial econometric model of 

STIRPAT. However, they failed to show the significance of economic productivity on 
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environmental quality. It is suspected that the use of overall GDP does not represent 

well enough the economic activity, in relation to the environmental quality. GDP by 

sectors should be used instead, by considering that different economics activity might 

affect the environment differently. 

The objective of this study is to identify the involved growth externalities on East 

Java’s environmental quality. It can be done by estimating the coefficients of the spatial 

version of STIRPAT, in which the local environmental quality index (EQI) is a function 

of neighbouring EQI, local as well as well as neighbouring regions’ population density, 

investment, and GDP by sectors. It is followed by the hypothesis testing regarding the 

significance effect of each predictor on the EQI. The test is focused on the coefficients 

(of elasticity) of the neighbouring factors representing externalities. The estimated 

coefficients will be will be useful as references for policy makers to redirect the growth 

into a more environmentally friendly development in this area. 

 

2. Research Data and Methodology 

2.1 Research Data 

The spatial version of STIRPAT is estimated using 2015 spatial data of 38 

cities/regencies of East Java. The data consist of the observed values of the following 

variables: 

- Environmental quality Index – EQI, of all 38 cities/regencies 𝐼𝑖 , 𝑖 = 1,2, … ,38. A 

higher index indicates a better environment quality.  

- Density (in 1000 persons/km2) of all cities/regencies. Density is used instead of 

population size in order to accommodate the area of each city/regency. It is used 

as a proxy for 𝑃𝑖 , 𝑖 = 1,2, … , 𝑛. 

- Per sector real GDP (in billion rupiahs) as the measure of productivity (A) 

• Real GDP per capita of the Agricultural Sector of each city/regency, 𝐴𝑔𝑖, 𝑖 =

1, … ,38 

• Real GDP per capita of the Mining Sector of each city/regency, 𝑀𝑖𝑛𝑖 , 𝑖 = 1, … ,38 

• Real GDP per capita of the Industrial Sector of each city/regency, 𝐼𝑛𝑖 , 𝑖 = 1, … ,38 

• The fund invested for infrastructure (in trillion rupiahs) of all cities/regencies, 

𝐾𝑖, 𝑖 = 1, … ,38. 

 

2.2 Methodology 

Defining the spatial version of STIRPAT 

In order to analyze the relation between environment quality and its driving factors, 

IPAT identity has been modified into a stochastic model Stochastic Impacts by 

Regression on Population, Affluence, and Technology (STIRPAT) (York et al., 2003). 

The model assumes that environmental quality is a function of Population (𝑃) and 

Affluence (𝐴). Those two factors can be explicitly measured by population size and per 

capita productivity respectively. In the contrary, there is no agreement regarding the 

exact measure of Technology (𝑇). Some (York et al., 2003) argue further that 

Technology (𝑇) also depends positively on Population (𝑃) and Affluence (𝐴). Thanks 



Indonesian Journal of Statistics and Its Applications. Vol 4 No 1 (2020), 216 - 233  221 

 

 
 

to the stochastics nature of the model, this problem can be solved by including 𝑇 in the 

error terms.  

York et al. (2003) define STIRPAT as: 

𝑰 = 𝒂𝑷𝒃𝑨𝒄𝑻𝒅𝒆     (1) 

in which each of the coefficients (𝑏, 𝑐, 𝑑) represents the elasticity between the 

corresponding factor and the environmental quality, and 𝑒 represents the random 

errors that independently and identically distributed. For the estimation purpose, (1) 

can be represented as an additive regression model:   

𝐥𝐧 𝑰𝒊 = 𝐥𝐧 𝒂 + 𝒃 𝐥𝐧 𝑷𝒊 + 𝒄 𝐥𝐧 𝑨𝒊 + 𝒅 𝐥𝐧 𝑻𝒊 + 𝒆𝒊 

= 𝛃𝟎 + 𝒃 𝐥𝐧 𝑷𝒊 + 𝒄 𝐥𝐧 𝑨𝒊 + 𝒅 𝐥𝐧 𝑻𝒊 + 𝒆𝒊, 

                                          𝒊 = 𝟏, 𝟐, ⋯ , 𝒏       (2) 

or 

𝐥𝐧 𝑰𝒊 = 𝐥𝐧 𝒂 + 𝒃 𝐥𝐧 𝑷𝒊 + 𝒄 𝐥𝐧 𝑨𝒊 + 𝒆𝒊 

= 𝛃𝟎 + 𝒃 𝐥𝐧 𝑷𝒊 + 𝒄 𝐥𝐧 𝑨𝒊 + 𝒆𝒊, 

𝒊 = 𝟏, 𝟐, ⋯ , 𝒏      (3) 

This study modifies the model into a spatial version, in order to accommodate the 

growth externalities by providing spatial reference for each of the cross sectional data 

used in the estimation process. When a set of spatial data is used, it is possible to 

measure the growth externalities in terms of the local growth effect on the neighbouring 

locations or vice versa. The key to capture the externalities is in the definition of 

neighbouring locations. For that purpose, using 𝑖 = 1, … , 𝑛 as a unit location index, the 

model uses a spatial lag operator. It defines a weighted average of the variable under 

study at ‘neighbouring’ locations. Here, ‘the neighbours’ of location 𝑖 are locations that 

are significantly influential to location 𝑖 or having intensive interaction with location 𝑖. 

They might be locations that share borders with location 𝑖 or within a certain distance 

from location 𝑖. In this case, the neighbors correspond to the nearby locations.  

Each location neighbours are defined by introducing a set of 𝑛 × 𝑛 spatial weight 

(𝑤𝑖𝑗 , 𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑛). It plays a role to differentiate the spatial model from the 

non-spatial one. If locations 𝑖 and 𝑗 are neighbours, then 𝑤𝑖𝑗 will be positive, zero 

otherwise. Since location 𝑖 cannot be its own neighbour, then 𝑤𝑖𝑖 for 𝑖 = 1, ⋯ , 𝑛 are 

zeros. Elhorst (2014b) or Anselin (2013) presents some options to define the weight 

(contiguity based or distance based). This study adopts the contiguity concept, such 

that: 

𝑤𝑖𝑗 =
𝑐𝑖𝑗

𝑐𝑖.
, 𝑐𝑖𝑗 = {

1,  if location i and j are shared a border

0,  otherwise
, 𝑐𝑖. = ∑ 𝑐𝑖𝑗

𝑛
𝑗=1 .  (4) 

After defining a proper spatial weight matrix, the spatial version of STIRPAT is 

developed such that it is possible to measure how much the change of the 
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neighbourhood population size, the neighbourhood productivity, and the 

neighbourhood adopted technology affecting the local environmental quality, in 

addition to the effects which are created from the change in the local factors. This 

modeling concept falls within the spatial econometrics framework. There are some 

possible spatial econometrics models. Each of them is formed based on the assumed 

source of externalities, which affect the local response, namely: the neighbourhood 

response, the neighbourhood predictors and the neighbourhood unobserved factors. 

Detail regarding the classification of the spatial econometrics models has been 

discussed in Lesage & Pace (2009) and Elhorst (2014a). 

The model which accommodates all of the possible sources of externalities is 

General Nesting Spatial (GNS). The corresponding GNS spatial version of STIRPAT 

based on model (2) is: 

ln 𝐼𝑖 = β0 + 𝜙 ∑ 𝑤𝑖𝑗 ln 𝐼𝑖 +

𝑛

𝑗=1

𝑏 ln 𝑃𝑖 + 𝑐 ln 𝐴𝑖 + 𝑑 ln 𝑇𝑖 + 𝜌 ∑ 𝑤𝑖𝑗 ln 𝑃𝑗

𝑛

𝑗=1

+ 𝛼 ∑ 𝑤𝑖𝑗 ln 𝐴𝑗

𝑛

𝑗=1

+ 𝜅 ∑ 𝑤𝑖𝑗 ln 𝑇𝑗

𝑛

𝑗=1

+ 𝑒𝑖 

𝑒𝑖 = 𝛾 ∑ 𝑤𝑖𝑗𝑒𝑗

𝑛

𝑗=1

+ 𝑣𝑖 , 

𝑖 = 1,2, ⋯ , 𝑛      (5) 

 

or the following one based on model in (3) when 𝑇 is included in the error terms: 

𝐥𝐧 𝑰𝒊 = 𝛃𝟎 + 𝝓 ∑ 𝒘𝒊𝒋 𝐥𝐧 𝑰𝒊 +

𝒏

𝒋=𝟏

𝒃 𝐥𝐧 𝑷𝒊 + 𝒄 𝐥𝐧 𝑨𝒊 + 𝒅 𝐥𝐧 𝑻𝒊 + 𝝆 ∑ 𝒘𝒊𝒋 𝐥𝐧 𝑷𝒋

𝒏

𝒋=𝟏

+ 𝜶 ∑ 𝒘𝒊𝒋 𝐥𝐧 𝑨𝒋

𝒏

𝒋=𝟏

+ 𝒆𝒊 

𝒆𝒊 = 𝜸 ∑ 𝒘𝒊𝒋𝒆𝒋

𝒏

𝒋=𝟏

+ 𝒗𝒊, 

𝒊 = 𝟏, 𝟐, ⋯ , 𝒏      (6) 

𝜙, 𝜌, 𝛼, 𝜅 and 𝛾 in (5) or  𝜙, 𝜌, 𝛼,, and 𝛾 in (6) are the parameters which measure the 

effect of externalities on the local environmental quality. Specifically, 𝜙 measures the 

effect of neighbourhood environmental quality, 𝜌, 𝛼, and 𝜅, measure the effect of the 

neighbourhood predictors (e.g. population, productivity, and technology), and 𝛾 

measures the effect of the neighbourhood unobserved factors. In model (5) and (6), 

there is a chance that the error terms 𝑒𝑖 , 𝑖 = 1, … , 𝑛 are spatially auto-correlated. 

Therefore, additional error terms that independently, identically and normally 

distributed are defined, namely 𝑣𝑖 , 𝑖 = 1, … , 𝑛.    Since each variable in (5) and (6) is 
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defined in its ln form, its parameter is interpreted as a coefficient of elasticity of the 

local environmental quality due to the change of the corresponding variable.  

The relation is still applicable for the level variables (without ln transformation) such 

that the following models: 

 

𝐼𝑖 = 𝛽0 + 𝜙 ∑ 𝑤𝑖𝑗 𝐼𝑖 +

𝑛

𝑗=1

𝑏𝑃𝑖 + 𝑐𝐴𝑖 + 𝑑𝑇𝑖 + 𝜌 ∑ 𝑤𝑖𝑗𝑃𝑗

𝑛

𝑗=1

+ 𝛼 ∑ 𝑤𝑖𝑗𝐴𝑗

𝑛

𝑗=1

+ 𝜅 ∑ 𝑤𝑖𝑗𝑇𝑗

𝑛

𝑗=1

+ 𝑒𝑖 

𝑒𝑖 = 𝛾 ∑ 𝑤𝑖𝑗𝑒𝑗
𝑛
𝑗=1 + 𝑣𝑖 ,  𝑖 = 1,2, ⋯ , 𝑛    (7) 

and  

𝐼𝑖 = β0 + 𝜙 ∑ 𝑤𝑖𝑗 𝐼𝑖 +

𝑛

𝑗=1

𝑏𝑃𝑖 + 𝑐𝐴𝑖 + 𝑑𝑇𝑖 + 𝜌 ∑ 𝑤𝑖𝑗𝑃𝑗

𝑛

𝑗=1

+ 𝛼 ∑ 𝑤𝑖𝑗𝐴𝑗

𝑛

𝑗=1

+ 𝑒𝑖 

𝑒𝑖 = 𝛾 ∑ 𝑤𝑖𝑗𝑒𝑗
𝑛
𝑗=1 + 𝑣𝑖 ,      𝑖 = 1,2, ⋯ , 𝑛   (8) 

hold as an alternative respectively for (5) and (6). They are the GNS spatial version of 

STIRPAT using level data. Each parameter in (7) and (8) is no longer interpreted as 

the coefficient of elasticity. It represents the marginal effect of environmental quality, 

due to the change of the corresponding predictor. However, the coefficient of elasticity 

can still be calculated based on the following relation:   

 

𝑬 = 𝑴 ×
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒
     (9) 

M is the estimated marginal effect and E is the estimated coefficient of elasticity 

(Gujarati, 2003; Mankiw, 2014). When one or some of those parameters are not 

significant, GNS can be reduced to a simpler model that is nested in it (see Elhorst 

(2014a) for detail classification). 

Defining the Spatial Version of STIRPAT in Terms of the Observed Variables 

For the estimation of the spatial version of STIRPAT, the available research data have 

some limitation. Firstly, there is no proxy for measuring the level of adopted 

technology for each city/regency such that it is assumed that 𝑇 is included in the error 

terms. Secondly, some cities/regencies have no real GDP of Mining Sector (𝑀𝑖𝑛𝑖 =

0), such that the log transformation of this variable will be undefined. Therefore a GNS 

for the level variable by assuming that 𝑇 is included in the error terms (model in (8)) 

is chosen as a starting point. The parameter which captures the spatial autocorrelation 

among the error terms represents the magnitude of externalities produced by the 

unobserved factors (e.g. adopted technology). Furthermore even though the 

estimated parameters are the marginal effect, they can be modified into the 

coefficients of elasticity, by applying relation in (9).  
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The model in terms of the observed variable can be defined as follows: 

𝐼𝑖 = 𝜙 ∑ 𝑤𝑖𝑗𝐼𝑗

𝑛

𝑗=1

+ 𝛽0 + 𝑏𝑃𝑖 + 𝑐1𝐴𝑔𝑖 + 𝑐2𝑀𝑖𝑛𝑖 + 𝑐3𝐼𝑛𝑖 + 𝑑𝐾 + 𝜌 ∑ 𝑤𝑖𝑗𝑃𝑗

𝑛

𝑗=1

+ 𝛼1 ∑ 𝑤𝑖𝑗𝐴𝑔𝑗

𝑛

𝑗=1

+ 𝛼2 ∑ 𝑤𝑖𝑗𝑀𝑖𝑛𝑗

𝑛

𝑗=1

+ 𝛼3 ∑ 𝑤𝑖𝑗𝐼𝑛𝑗

𝑛

𝑗=1

+ 𝜅 ∑ 𝑤𝑖𝑗𝐾𝑗

𝑛

𝑗=1

+ 𝑒𝑖 

 

𝑒𝑖 = 𝛾 ∑ 𝑤𝑖𝑗𝑒𝑗
𝑛
𝑗=1 + 𝑣𝑖 .     (10) 

In (10) 𝜙 measures the effect of neighbourhood environmental quality, 𝜌, 𝛼1, 𝛼2, 𝛼3 and 

𝜅, measure the effect of the neighbourhood predictors (e.g. density, agricultural sector 

productivity, mining sector productivity, industrial sector productivity and fund invested 

for infrastructure respectively), and 𝛾 measures the effect of the neighbourhood 

unobserved factors. The focus will be on the significance of those parameters. They 

can be used to reduce GNS into a simpler model and to answer the question regarding 

the involved externalities on East Java’s environmental quality.  

Estimating the Models’ Parameters  

The parameter estimation method depends on the problem emerged due to the setting 

of each model. Arbia (2014) provides a detailed discussion about the estimation 

method for each model. Generally, the setting of the model creates one or the 

combination of the following problems: heteroscedasticity, (spatial) autocorrelation 

among the error terms and endogeneity. The number of problems that the model has 

depends on its complexity. Due to their most complex setting, GNS and SAC (Spatial 

Autoregressive Confused) have all of those three problems. In this situation one of the 

following methods is applicable: Maximum Likelihood (ML), Generalized Spatial Two 

Stage Least Squares (GS2SLS), or Lee’s Instrumental Variable (LIV). SDEM (Spatial 

Durbin Error Model) and SEM (Spatial Error Model) suffer from heteroscedasticity and 

(spatial) autocorrelation among the error terms, such that ML or Feasible GLS (FGLS) 

is considered appropriate. ML or Two – Stage Least Squares (2SLS) can be applied 

for SAR (Spatial Autoregressive) and SDM (Spatial Durbin Model) because they only 

have endogeneity problem. Because SLX (Spatial Lag of X) is free from those 

problems, OLS is applicable to estimate its parameters. 

Choosing the Best Model 

The best model is the model which has already accommodated all possible sources of 

externalities. It can be GNS or other simple model that nested in GNS. It starts with 

GNS in (10). It is considered as a candidate of the best model if all the sources of 

externalities create significant effect on EQI. Otherwise one source of externalities with 

insignificant effect is eliminated, leading to one of the following models: SAC, SDEM 

or SDM. The elimination of one more source of externalities is repeated if the relevant 

variables do not show significant effect on EQI. It leads to one of the following models 

which only have one source of externalities, namely: SAC, SDEM or SDM.  

The model that indicates the significant effect(s) of the remaining neighbourhood 

variable(s) is considered as the model that well capturing the externalities on the 
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environmental quality. On the other hand, if up to the last model there is no evidence 

regarding the significance of the remaining neighbourhood variable, it is an indication 

that the EQI is only affected by the local factors. 

Within the context of spatial econometrics modeling, without explicitly 

accommodates the spatial externalities, if the effects are indeed significant, they will 

be captured by the model’s error terms. In this case, the null hypothesis of no spatial 

autocorrelation among the model’s residuals will be rejected. On the other hand the 

null hypothesis about spatial independence of residuals is accepted if the model has 

fully taken into account the spatial externalities. Therefore, to guarantee that the 

chosen model has well accommodated the spatial externalities, LM tests for no spatial 

autocorrelation among the model’s residuals against specific (alternative) models are 

conducted.  

Technical details regarding LM test can be found in Anselin (2013) or Arbia (2014). 

Instead of conducting a Moran test, both writers prefer this type of test. They argue 

that unlike the Moran test, which does not state how to model the spatial 

autocorrelation if the null hypothesis is rejected, the LM test explicitly defined SEM or 

SAR as the alternative model to take into account the spatial autocorrelation.  

Estimating the Direct and the Indirect Effects 

The definitions about the direct and indirect effects have been discussed thoroughly 

in Lesage & Pace (2009) and Arbia (2014). The magnitudes of those effects depend 

on the parameters of the model. They are calculated as the partial derivative of the 

expected local EQI with respect to each local or neighboring predictor, namely: density 

(𝑃), agricultural productivity (𝐴𝑔), mining productivity (𝑀𝑖𝑛), industrial productivity (𝐼𝑛) 

and invested fund for infrastructure (𝐾). The direct effect is derived as the effect of 

local activity (in terms of those predictors) on the local EQI, whereas the indirect effect 

is the effect of neighboring activity on the local EQI.  

 

 
Figure 2: The map of Environmental Quality Index of Each City/Region of East Java 

Indonesia, 2015 Data. 
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3. Results and Discussion 

Before discussing the estimation process and the significance of each factor on the 

environmental quality, it is important to understand the spatial pattern of the 

environmental quality index in this study area. The map of observed environmental 

quality index of each city/regency, from 2015 data is presented in Figure 2. The 

comparison between Figure 2 and the map of dominant economic activity in Figure 1 

reveals that the cities/regencies with low environmental quality index are dominated 

by industrial activity. On the contrary, regions having high EQI are mainly dominated 

by agricultural activity.  In Figure 2, the clustering of nearby cities/regencies with the 

same EQI categories indicates a positive spatial autocorrelation among the EQI of 

cities/regencies in East Java. This indication is confirmed by the result of Moran I 

which tests the spatial autocorrelation of EQI among East Java’s cities/regencies. The 

test yields p value = 0.069, which is adequate support (at 𝛼 = 10%) for the significance 

of the spatial autocorrelation.   

The estimated parameters for all models are presented in Table 1. GNS is the 

starting point of the modeling. If one or more parameters which represent the effect of 

externalities are not significant, a simpler model can be chosen. The result in Table 1 

indicates that the estimated parameters of neighbourhood EQI (𝜙), the neighbourhood 

unobserved factors (𝛾) and some of the neighbourhood s predictors (𝜌, 𝛼1, 𝛼2, 𝛼3, 𝜅) of 

GNS are not significant. Therefore SAC, SDEM or SDM can be fitted, by eliminating 

one type of the neighbourhood factor, as follows: 

- SAC: It is fitted by eliminating the parameters of the neighbourhood predictors 

(𝛼1 = 𝛼2 = 𝛼3 = 𝜅 = 0). The neighbourhood EQI and the neighbourhood 

unobserved factors are still in the model. However, the result in Table 1 shows 

that the estimated parameters for those variables (𝜙 and 𝛾) are not significant, 

such that one of those variables will be excluded in the next modeling stage.  

- SDEM: It is fitted by eliminating the parameter of the neighbourhood EQI (𝜙 =

0). The result in Table 1 indicates that the estimated parameter of some of the 

neighbourhood predictors (𝜌, 𝛼2, 𝜅) have significant effects on the local EQI. 

Only the unobserved factors which do not significantly affect the EQI, therefore 

in the next stage, these factors will be excluded.  

- SDM: It is fitted by eliminating the parameter of the neighbourhood unobserved 

factors (0 = 𝛾). The estimated parameters and the result of hypotheses testing 

in Table 1 show that all the remaining neighbourhood variables do not 

significantly affect the environmental quality. One of those neighbourhood 

variables will be excluded in the next stage.  

The next stage of the modeling process is estimating the models which only 

include one type of neighbourhood variable, as follows: 

- SAR: It is fitted by eliminating the parameters of the neighbourhood predictors 

(𝛼1 = 𝛼2 = 𝛼3 = 𝜅 = 0) and the neighbourhood unobserved factors (𝛾 = 0). 

However, after hypothesis testing (see Table 1), the remaining neighbourhood 

variable, namely the neighbourhood environmental quality does not show 
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significant effect (𝜙) on the local environmental quality. 

- SEM: It is fitted by eliminating the parameters of the neighbourhood predictors 

(𝛼1 = 𝛼2 = 𝛼3 = 𝜅 = 0) and the neighbourhood environmental quality (𝜙 = 0). 

The estimated parameter (𝛾) for the remaining neighbourhood variable, which 

represents the neighbourhood unobserved factors, is not significant.  

- SLX: It is fitted by eliminating the parameter of neighbourhood environmental 

quality (𝜙 = 0) and the neighbourhood unobserved factors (𝛾 = 0). The 

neighbourhood predictors are still in the model and the hypothesis testing 

indicates that some of the parameters (𝛼1, 𝛼2, 𝛼3, 𝜅) for these variables are 

significant.   

Table 1: The Estimated Parameters of all models. 

Param

eter 
Variable GNS SAC SDEM SDM 

SAR/SL

M 
SEM SLX 

𝛽0 Intercept 66.782 

(**) 

37.514 

(**) 

71.509 

(**) 

88.92 

 

53.076 

(**) 

61.963 

(**) 

69.130 

(**) 

𝜙 Neighbour

hood I 

0.076 0.381  -0.302 0.134   

b 

 

P -0.002 

(**) 

-0.002 

(**) 

-0.002 

(**) 

-0.002 

 

-0.001 

(**) 

-0.001 

(**) 

-0.002 

(**) 

c1 

 

Ag 

 

0.001 

(**) 

0.001 

(**) 

0.001 

(**) 

0.001 

 

0.001 

(**) 

0.001 

(**) 

0.001 

(**) 

c2 Min -1.39e-04 -2.15e-04 -1.61e-04 -2.37e-04 -1.37e-04 -2.02e-04 -1.744e-04 

c3 In -1.26e-06 -4.93e-05 3.62e-06 1.82e-05 -2.25e-05 -6.19e-05 6.52e-05 

D K 0.297 0.162 0.295 0.286 0.035 0.068 0.205 

𝜌 

 

Neighbour

hood P 

 

-0.007 

(**) 

 -0.008 

(**) 

-0.008 

 

  -0.007 

(*) 

𝛼1 Neighbour

hood Ag 

-2.54e-04  -8.12e-05 7.27e-04   2.93e-04 

𝛼2 

 

Neighbour

hood Min 

 

-1.01e-03 

 

 -1.04e-03 

(**) 

-1.09e-03 

 

  -8.39e-04 

(*) 

𝛼3 Neighbour

hood In 

1.25e-04  1.05e-04 -7.80e-06   1.01e-06 

𝜅 Neighbour

hood K 

0.111  0.172 0.471   0.326 

𝛾 Neighbour

hood 

unobserve

d factor 

-0.478 -0.465 -0.408   -0.079  

- (**) significant at 5% of 𝛼, (*) significant at 10% of 𝛼. 

 

Up to the second stage of modeling, the only model which shows the significance 

of the remaining neighbourhood variable(s) is SLX. The LM test is conducted to check 

the nature of the model’s residual terms. No spatial autocorrelation among the residual 

terms indicates that all possible neighbourhood factors which affect the local 
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environmental quality (e.g. adopted technology) have been well accommodated in the 

model. It is used as the null hypothesis, which is tested against two alternative models, 

SEM and SAR. The results of the test for both models are presented in Table 2. The 

test does not reject the null hypothesis for both alternatives. It guarantees that SLX is 

the best model. Therefore, all research questions which are related to East Java’s 

environmental condition are answered based on the SLX.  

 

Table 2: The result of LM test for the spatial independency of the SLX’s 

residual/terms.   

  LM Statistics P value 

SEM for Alternative 1.286 0.2567 

SAR for Alternative 0.972 0.3241 

 

The estimated parameters for SLX are depicted in the last column of Table 1. The 

result of the hypothesis testing for each of SLX’s parameters indicates that the local 

EQI is significantly affected by the local and neighbourhood density, the 

neighbourhood mining productivity, and the local agricultural productivity. The positive 

effects are produced by the local agricultural productivity, whereas the local density, 

neighbourhood density, and neighbourhood mining productivity create negative effect 

on the local EQI.   

In the first part of this paper, it is formulated that the aim of this study is to test the 

significance of the growth externalities on the EQI of East Java. To achieve that 

objective, this discussion is focused on the significance of parameters that are related 

to the neighbourhood factors. Since SLX is considered as the best model, 

automatically the neighbourhood EQI, and the neighbourhood unobserved factors 

have already excluded from the model. It implies that they are not the source of 

externalities. Among the estimated parameters of SLX for the East Java EQI 

presented in the last column of Table 1, 𝜌 and 𝛼2 are the significant parameters. They 

measure the effect of neighbourhood density and neighbourhood mining activity 

respectively. Therefore, for the case of East Java’s EQI the density (population) and 

mining activity are the main source of externalities. 

Before discussing the policy implications of the result, it is necessary to analyze 

the interpretation of each coefficient which measures the effect of the change of one 

predictor on the EQI. In an ordinary regression model, the parameter of a certain 

predictor is the marginal rate of the response (for the level variables) or the coefficient 

of elasticity of the response (for the log variables), with respect to the change of that 

particular predictor, by holding other predictors constant. The change occurs at 

location 𝑖 and it is assumed that the effect only takes place in location 𝑖, without 

affecting the situation in other locations. The complexity may arise when a spatial 

econometric model is used. When the change of a particular predictor takes place in 

location 𝑖, in addition the effect at the same location, the change will also affect other 

locations (the neighbourhood). Technically those effects are defined as direct effect 

and indirect effect, respectively.  
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The magnitudes of those effects depend on the parameters of the model. In order 

to understand how the change of each predictor in every location affecting the 

response (EQI), the GNS model for East Java’s EQI in (10) is redefined specifically 

for SLX, such that:    

𝐼𝑖 = 𝛽0 + 𝑏𝑃𝑖 + 𝑐1𝐴𝑔𝑖 + 𝑐2𝑀𝑖𝑛𝑖 + 𝑐3𝐼𝑛𝑖 + 𝑑𝐾 + 𝜌 ∑ 𝑤𝑖𝑗𝑃𝑗
𝑛
𝑗=1 + 𝛼1 ∑ 𝑤𝑖𝑗𝐴𝑔𝑗

𝑛
𝑗=1 +

𝛼2 ∑ 𝑤𝑖𝑗𝑀𝑖𝑛𝑗
𝑛
𝑗=1 + 𝛼3 ∑ 𝑤𝑖𝑗𝐼𝑛𝑗

𝑛
𝑗=1 + 𝜅 ∑ 𝑤𝑖𝑗𝐾𝑗

𝑛
𝑗=1 + 𝑒𝑖    (11) 

 

with its respective expected value: 

 

𝐸(𝐼𝑖) = 𝛽0 + 𝑏𝑃𝑖 + 𝑐1𝐴𝑔𝑖 + 𝑐2𝑀𝑖𝑛𝑖 + 𝑐3𝐼𝑛𝑖 + 𝑑𝐾 + 𝜌 ∑ 𝑤𝑖𝑗𝑃𝑗

𝑛

𝑗=1

+ 𝛼1 ∑ 𝑤𝑖𝑗𝐴𝑔𝑗

𝑛

𝑗=1

+ 𝛼2 ∑ 𝑤𝑖𝑗𝑀𝑖𝑛𝑗

𝑛

𝑗=1

+ 𝛼3 ∑ 𝑤𝑖𝑗𝐼𝑛𝑗

𝑛

𝑗=1

+ 𝜅 ∑ 𝑤𝑖𝑗𝐾𝑗

𝑛

𝑗=1

 

(12) 

 

The following 𝑛 × 𝑛 matrices: 𝑺𝑃, 𝑺𝐴𝑔 , 𝑺𝑀𝑖𝑛, 𝑺𝐼𝑛 and 𝑺𝐾 are the matrices of the partial 

derivative of the expected value of EQI with respect to each predictor, density (𝑃), 

agricultural productivity (𝐴𝑔), mining productivity (𝑀𝑖𝑛), industrial productivity (𝐼𝑛) and 

invested fund for infrastructure (𝐾) respectively. The 𝑖𝑗𝑡ℎelement of each matrix is 

respectively defined as: 

𝑆𝑃,𝑖𝑗 =
𝜕𝐸(𝐼𝑖)

𝜕𝑃𝑗
, 𝑆𝐴𝑔,𝑖𝑗 =

𝜕𝐸(𝐼𝑖)

𝜕𝐴𝑔𝑗
, 𝑆𝑀𝑖𝑛,𝑖𝑗 =

𝜕𝐸(𝐼𝑖)

𝜕𝑀𝑖𝑛𝑗
, 𝑆𝐼𝑛,𝑖𝑗 =

𝜕𝐸(𝐼𝑖)

𝜕𝐼𝑛𝑗
, 𝑆𝐾,𝑖𝑗 =

𝜕𝐸(𝐼𝑖)

𝜕𝐾𝑗
 

𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛 

Each element measures the expected effect of the change of a particular predictor in 

location 𝑗 on the EQI of location 𝑖.  

According to the source of the change, the effects can be categorized as follows: 

- The Direct effect: it is the effect on the response observed at location 𝑖 when the 

change of a predictor takes place also at location 𝑖 (𝑆𝑖𝑖). For East Java’s EQI, based 

on SLX in (11), the magnitude of this effect is represented by the parameter of a 

local predictor, which are 𝑏, 𝑐1, 𝑐2, 𝑐3 and 𝑑 respectively for the change of density 

(𝑃), agricultural productivity (𝐴𝑔), mining productivity (𝑀𝑖𝑛), industrial productivity 

(𝐼𝑛) and invested fund for infrastructure (𝐾). The magnitude of this effect is 

constant across locations, 𝑖 = 1, … , 𝑛, such that, it also represents the magnitude 

of the Average Direct Effect (ADE).  

- The average total effect from location 𝒊: it is the average effect of the response 

at location 𝑖 due to the change of a particular predictor across location 𝑗 = 1, … , 𝑛 

𝑛−1 ∑ 𝑆𝑖𝑗

𝑛

𝑗=1
 

Summing the effects from all locations 𝑖 = 1, … , 𝑛, will define The Average Total 

Effect (ATE). For East Java’s EQI, based on SLX in (11), the magnitude of this 
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effect is (𝑏 + 𝜌), ( 𝑐1 + 𝛼1), (𝑐2 + 𝛼2), (𝑐3 + 𝛼3) and (𝑑 + 𝜅) respectively for the 

change of density (𝑃), agricultural productivity (𝐴𝑔), mining productivity (𝑀𝑖𝑛), 

industrial productivity (𝐼𝑛) and invested fund for infrastructure (𝐾). 

- The Average Indirect Effect (AIE): it is the total effect of the response across 

locations 𝑖, 𝑖 = 1, … , 𝑛, when the change of a predictor occurs elsewhere (location 

𝑗 ≠ 𝑖). It can be calculated as: 

𝑨𝑰𝑬 = 𝑨𝑻𝑬 − 𝑨𝑫𝑬 

For East Java’s EQI, based on SLX in (11), the magnitude of this effect is 

𝜌, 𝛼1, 𝛼2, 𝛼3 and 𝜅 respectively for the change of density (𝑃), agricultural productivity 

(𝐴𝑔), mining productivity (𝑀𝑖𝑛), industrial productivity (𝐼𝑛) and invested fund for 

infrastructure (𝐾). 

 

All of those effects take place by assuming that only one predictor has changed its 

state, by holding the others constant. The definitions about the direct and indirect 

effects have been discussed thoroughly in Lesage & Pace (2009) and Arbia (2014). 

Since the model is estimated using level data, the estimated parameters of SLX are 

interpreted as the marginal rate of change. The equation (9) can be applied in order 

to change them into the coefficients of elasticity. The magnitude of each effect, in 

terms of the Marginal Effect and the Coefficient of Elasticity, is presented in Table 3. 

 

Table 3: The Estimated Total Effects, Direct Effects and Indirect Effects, in terms of 

Marginal Effect and Coefficient of Elasticity. 

  

  

  

  

Marginal Effect 

 

Average 

Coefficient of Elasticity 

Total 

Effect  

Direct 

Effect 

Indirect 

Effect 

Total 

Effect Direct Effect 

Indirect 

Effect 

S
o

u
rc

e
 o

f 

c
h

a
n

g
e
 

P  -0.0091 -0.0022 -0.0069 1829.6579 -0.2572 -0.0616 -0.1957 

Ag  0.0016 0.0013 0.0003 4288.4658 0.1045 0.0851 0.0194 

Min  -0.0010 -0.0002 -0.0008 1744.8896 -0.0273 -0.0047 -0.0226 

In  0.0001 0.0001 0.0000 10316.6368 0.0106 0.0104 0.0002 

K  0.5304 0.2048 0.3256 2.4257 0.0199 0.0077 0.0122 

Resp

onse EQI       65       

 

The following discussion regarding the magnitude of each significance effect in 

terms of coefficient elasticity is based on the estimated effects presented in Table 2. 

It is assumed that the change of EQI is triggered by the change of one of the 

predictors, which significantly affect the EQI, namely: density (𝑃), agricultural 

productivity (𝐴𝑔), and mining productivity (𝑀𝑖𝑛).  

The increase in density (𝑃) creates a significant effect on the local East Java’s EQI 

(direct effect) as well as the neighbourhood EQI (indirect effect). When other factors 

are held constant, 1% increases in density decreases the local EQI by 0.062% on 

average and the EQI of other cities/regencies by 0.19% on average. This result 

indicates that in East Java indeed the more populated an administrative area is, the 
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environment faces more pressure. Locally, more land needs to be cleared for 

residential, more carbon is produced and more pollutant is disposed into the open 

water due to the more economic activities from its citizen. The mobility of labor, which 

resides in one city/regency but works in one of nearby regencies/cities, eventually 

creates similar problems in his working regency/city. However the percentage change 

of EQI is not as big as the percentage increase of density, directly and indirectly. 

The increases in agricultural productivity (𝐴𝑔) only create a significant local (direct) 

effect on East Java’s EQI. In this case, when other factors are held constant, 1% 

increases in agricultural productivity (𝐴𝑔) increases the EQI on average by 0.08%. 

The more agricultural activity leads to more land is preserved for green area. But since 

land is limited inside a certain administrative boundary, the activity only affects the 

local EQI, it does not produce any externalities on the EQI of the other 

cities/regencies. In East Java’s case the local EQI is inelastic for the change of 

agricultural productivity. 

On the other hand, even though it is not big in magnitude, the analysis suggests 

that mining productivity (𝑀𝑖𝑛) creates a certain impact on the EQI of surrounding 

cities/regencies of East Java. The significance of its indirect effect indicates that 1% 

increase of mining productivity leads to an average of 0.026% decrease on the EQI 

of other cities/regencies. The result indicates that even though the activity does not 

create significant effect locally, the pollutant produced by this activity has been carried 

by water or air, which is more impactful when it reaches certain radius beyond the 

local administrative boundary.  

Regarding the objective of this study, density (𝑃) and mining productivity (𝑀𝑖𝑛) are 

identified as the involved growth externalities on East Java’s environmental quality. 

The effect of the change of those two factors might reach the nearby cities/regencies, 

and affect the EQI in those cities/regencies.  

  

4. Conclusions  

A spatial version of STIRPAT is developed in order to identify the dominant growth 

externalities on the environmental quality index (EQI) among 38 cities/regencies of 

East Java. The model is estimated based on a set of spatial data of each 

city/regency’s EQI, density, density (𝑃), mining productivity (𝑀𝑖𝑛), agricultural 

productivity (𝐴𝑔), industrial productivity (In) and invested fund for infrastructure (𝐾). A 

GNS model is the initial estimated model, which then proceed to a simpler model due 

to the insignificance of one or some parameters. SLX is chosen as the model which 

appropriately defines the EQI as a function of local as well as neighbourhood 

predictors. This study also derives the direct and the indirect effects for the change of 

each predictor on the EQI, such that the magnitude of the local, as well as the 

neighbourhood effects, can be measured. The SLX identifies that for East Java’s 

case, density (𝑃) and the mining productivity (𝑀𝑖𝑛) are the involved growth 

externalities that affect the EQI.  

The model indicates that density (𝑃) creates some negative impacts on the local 

as well as neighbourhood EQI, agricultural productivity (𝐴𝑔) produces a positive effect 
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on the local EQI, and mining productivity (Min) creates a negative effect on the EQI of 

the surrounding cities/regencies. The highlight of this study is that in every 

city/regency the population density has reached the maximum environment carrying 

capacity, such that a slight increase in the population density leads to a worse local 

as well as neighbourhood environmental quality. But, the magnitude of the effects is 

less than the percentage of the increase in density. In terms of productivity by sector, 

more economic activity does not necessarily decrease the environmental quality. The 

result indicates that maintaining or preserving agricultural productivity can be a 

potential solution to have a better environment quality, even though the causal effect 

relationship only holds locally. Special attention must be given to cities/regencies with 

mining potential. There should be coordination among the particular cities/regencies 

with the surrounding cities/regencies in terms of economic tools (i.e. tax) to internalize 

the negative externalities of the mining activity.  
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