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Abstract 

 In this paper, we introduce a new family of continuous distributions called the beta 

transmuted Dagum distribution which extends the beta and transmuted familys. The 

genesis of the beta distribution and transmuted map is used to develop the so-called 

beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment 

generating function, quantiles and stress-strength of the beta transmuted Dagum 

distribution (BTD) are provided and discussed in detail. The method of maximum 

likelihood estimation is used for estimating the model parameters. A simulation study is 

carried out to show the performance of the maximum likelihood estimate of parameters 

of the new distribution. The usefulness of the new model is illustrated through an 

application to a real data set.  

 

Keywords: beta dagum distribution, dagum distribution, maximum likelihood method, 

moments, transmuted distribution. 

 

 

 

 

 

1. Introduction 

Dagum proposed a three-parameter (type I) and four-parameter (type II) distributions 

for modeling size distribution of income in Dagum (1980, 2008). However, the Dagum 

type I (or Dagum) distribution has received increased attention just because of being a 

tentative competitor as compared to other models. A detailed discussion on the Dagum 

distributions is addressed in Dagum (1997, 2006). In fact, the Dagum model has many 
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properties that are required for describing an income size model. The importance of 

this model is that it provides good fit to the extreme sides of income data. Its 

applications to human capital and personal income appeared in Costa (2006), Pérez & 

Alaiz (2011), Ivana (2011), and Lukasiewicz et al. (2012). Binoti et al. (2012) and Alwan 

et al. (2013) worked with the Dagum distribution for assessing the reliability of an 

electrical system and for describing diameter in teak stands subjected to thinning at 

different ages. Kleiber & Kotz (2003), Shahzad & Asghar (2013),  and Pant & Headrick 

(2013) discussed properties and parameter estimation of the Dagum distribution. 

Domma (2007) determined the asymptotic distribution of the maximum likelihood 

estimators (MLEs) for the right-truncated Dagum model. Pollastri & Zambruno (2010) 

proposed an estimation procedure of the distribution of the ratio of two independent 

Dagum random variables. Domma et al. (2012) described the usefulness of the Dagum 

model in reliability theory and showed that its hazard rate function (hrf) can have a 

decreasing, an upside-down bathtub and a bathtub and then upside-down bathtub 

forms. Domma et al. (2011) discussed the maximum likelihood estimation of the 

Dagum’s parameters for censored data which usually occur in life-testing problems. 

The Fisher information matrix of doubly censored data and type II doubly censored 

data was computed in Domma et al. (2013). Domma (2004) defined the log-Dagum 

distribution and studied the changes in the kurtosis by using the kurtosis diagram given 

by Zenga (1996) and Polisicchio & Zenga (1997). Domma & Perri (2009) discussed 

some more structural properties and parameter estimation of the log-Dagum 

distribution. A random variable 𝑋 has the Dagum (Type-I) distribution with three positive 

parameters 𝛼, 𝜃 and 𝛽, if its cdf is given by 
 

𝐺(𝑥) = (1 + 𝛼𝑥−𝜃)
−𝛽
, 𝑥 > 0, (1) 

where 𝛼 is a scale parameter, and 𝜃 and 𝛽 are shape parameters, the pdf 
corresponding to (1) is given by 

𝑔(𝑥) = 𝛼𝜃𝛽𝑥−𝜃−1(1 + 𝛼𝑥−𝜃)
−𝛽−1

,   for 𝛼, 𝜃, 𝛽 > 0 (2) 

Recently, Elbatal & Aryal (2015) introduced another generalization of the Dagum 

distribution, which they called the transmuted Dagum distribution. A random variable 

𝑋 is said to have transmuted Dagum probability distribution with parameters 𝛼 > 0, 𝜃 >
0, 𝛽 > 0 𝑎𝑛𝑑 |𝜆| ≤ 1, the cdf of transmuted Dagum distribution 

G(x) = (1 + 𝛼𝑥−𝜃)
−𝛽
  (1 + λ − λ(1 + 𝛼𝑥−𝜃)

−𝛽
), (3) 

The probability density function (pdf) of the transmuted Dagum distribution is given 

by 

g(x) = αθβ𝑥−𝜃−1(1 + 𝛼𝑥−𝜃)
−𝛽−1

  (1 + λ − 2λ(1 + 𝛼𝑥−𝜃)
−𝛽
). (4) 

A class of generalized distributions F(x) has been receiving considerable attention 

over the last few years, in particular, after the studies by Eugene et al. (2002) and 

Jones (2004). If G denotes the baseline cumulative distribution function (cdf) of a 

random variable, then the beta-G distribution is defined as 
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𝐹(𝑥) = 𝐼𝐺(𝑥)(𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
∫ 𝑡𝑎−1
𝐺(𝑥)

0
(1 − 𝑡)𝑏−1𝑑𝑡, (5) 

where 𝑎 > 0 and 𝑏 > 0 are shape parameters. Note that 𝐼𝑦(𝑎, 𝑏) =
𝐵𝑦(𝑎,𝑏)

𝐵(𝑎,𝑏)
, is the 

incomplete beta function ratio, and 𝐵𝑦(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1  
𝑦

0
𝑑𝑡, is the incomplete 

beta function, 𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
 is the beta function and Γ(. ) is the gamma function. 

The probability density function (pdf) of the Beta-G distribution has the form 

f(x) =
g(x)

B(𝑎, b)
 [G(𝑥)]a−1[1 − G(𝑥)]b−1. (6) 

This class of generalized distribution has received considerable attention over the 

last years and several classical distributions have been generalized using this 

formulation. We generalize the transmuted Dagum distribution (3) using this 

formulation in order to construct the beta transmuted Dagum (BTD) distribution. This 

paper is organized as follows. In section 2, we define the BTD distribution and discuss 

some of its sub-models. In Section 3 we present the mixture representation of the BTD 

distribution. Section 4 discusses some structural and mathematical properties of the 

BTD distribution such as the moments, quantile and stress-strength reliability. The 

maximum likelihood estimation of the model parameters and a simulation study are 

investigated in Section 5. Applications are given in Section 6, followed by concluding 

remarks. 

 

2. The Beta Transmuted Dagum Distribution 

We provide the formulation of the beta transmuted Dagum (BTD) distribution. By 

inserting (3) into (5) the cumulative distribution function of the beta-transmuted Dagum 

distribution with four parameters is given by 

𝐹(𝑥) = 𝐼
(1+𝛼𝑥−𝜃)

−𝛽
   (1+λ−λ(1+𝛼𝑥−𝜃)

−𝛽
)
(𝑎, 𝑏), 

 

=
1

𝐵(𝑎,𝑏)
∫ 𝑡𝛼−1
(1+𝛼𝑥−𝜃)

−𝛽
(1+λ−λ(1+𝛼𝑥−𝜃)

−𝛽
)

0
(1 − 𝑡)𝑏−1𝑑𝑡, (7) 

where 𝑥 > 0, 𝛼 > 0, 𝜃 > 0 , 𝛽 > 0, |λ| ≤ 1 and 𝑎 > 0, 𝑏 > 0. 

The cdf can be expressed in a closed form using the hypergeometric function see 

Cordeiro & Nadarajah (2011) as follows:   

𝐹(𝑥) =
[(1 + 𝛼𝑥−𝜃)

−𝛽
   (1 + λ − λ(1 + 𝛼𝑥−𝜃)

−𝛽
)]
𝑎

𝑎𝐵(𝑎, 𝑏)
. 2𝐹1 (𝑎, 1 − 𝑏; 𝑎

+ 1; (1 + 𝛼𝑥−𝜃)
−𝛽
   (1 + λ − λ(1 + 𝛼𝑥−𝜃)

−𝛽
)), 

 

where 

2𝐹1(𝑐, 𝑑; 𝑒; 𝑧) = ∑
(𝑐)𝑘 (𝑑)𝑘 

(𝑒)𝑘

∞

𝑘=0

 
(𝑧𝑘)

𝑘!
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is the Gaussian hypergeometric function with (𝑐)𝑘 defined as 

(𝑐)𝑘 = {
𝑐(𝑐 + 1)(𝑐 + 2)… . (𝑐 + 𝑘 − 1)    𝑘 = 1,2,3, …

1                       𝑘 = 0.            
 

 

The pdf 𝑓(𝑥) and the hazard rate function ℎ(𝑥) are obtained as 

𝑓(x) =
αθβ 

xθ+1 B(a,b)
(1 + αx−θ)−β−1(1 + λ − 2λ(1 + αx−θ)−β) [(1 +

αx−θ)−β]
a−1
[(1 + λ − λ(1 + αx−θ)−β)]

a−1
  [1 − (1 + αx−θ)−β(1 + λ −

λ(1 + αx−θ)−β)]
b−1

, 

(8) 

h(x) =
αθβ x−θ−1 (1+αx−θ)−β−1(1+λ−2λ(1+αx−θ)−β)

B(a,b)I
1−(1+αx−θ)

−β
   (1+λ−λ(1+αx−θ)

−β
)
(a,b)

 [(1 + αx−θ)−β]
a−1
[(1 + λ −

λ(1 + αx−θ)−β)]
a−1
  [1 − (1 + αx−θ)−β(1 + λ − λ(1 + αx−θ)−β)]

b−1
, 

(9) 

where 𝑥 > 0, 𝛼 > 0, 𝜃 > 0 , 𝛽 > 0, |λ| ≤ 1 and 𝑎 > 0, 𝑏 > 0. 

The BTD distribution includes the following distributions as special case: 

 for λ = 0 , beta transmuted Dagum reduces to beta Dagum distribution. 

 For a = b = 1 , beta transmuted Dagum reduces to transmuted Dagum 

distribution. 

 For a = b = 1 and λ = 0 , beta transmuted Dagum reduces to Dagum 

distribution.  

     Figure 1 illustrates the graphical behavior of the pdf (8) and the hazard rate 

function (9) of BTD distribution for selected values of the parameters 𝜃, λ and a with 

𝛼 = 1.5, 𝛽 = 1.5 𝑎𝑛𝑑 𝑏 = 1.  

 

 

 
(a) 

 

 
(b) 

Figure 1: Pdf (a) and ℎ(𝑥) (b) of BTD distribution for selected values of the 

parameters. 
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3. Mixture Representation 

In this section we find the series representations of the cdf and the pdf of the BTD 

distribution which will be useful to study its mathematical characteristics. For an 

arbitrary baseline cdf 𝐺(𝑥), a random variable is said to have the exponentiated-G 

(“exp-G” for short) distribution with power parameter 𝑎 > 0, say 𝑌~𝑒𝑥𝑝 − 𝐺(𝑎), if its cdf 

and pdf are 𝐻𝑎(𝑥) = [𝐺(𝑥)]
𝑎 and ℎ𝑎(𝑥) = 𝑎𝑔(𝑥)[𝐺(𝑥)]

𝑎−1, respectively. As we shall 

see both pdf and cdf of BTD distribution can be expressed in terms of the Dagum 

distribution. Consider the power series expansion  

(1 − 𝑡)𝑏−1 =∑(−1)𝑗 (
𝑏 − 1
𝑗
)

∞

𝑗=0

[𝐺(𝑥)]𝑗, 

which holds for |𝑡| < 1 and 𝑏 > 0 real non-integer. The pdf in (8) can be rewritten as 

f(x) =
g(x)

  B(a,b)
  (1 + λ − 2λ𝐺(𝑥))     [(1 + λ)𝐺(𝑥) − λ𝐺(𝑥)2)]a−1[1 − {((1 + λ)𝐺(𝑥) −

λ𝐺(𝑥)2)}]b−1. 

Consider 𝐴 = [1 − {((1 + λ)𝐺(𝑥) − λ𝐺(𝑥)2)}]b−1. 

Applying the power series to the quantity A, we obtain 

f(x) =
1

  B(a, b)
 g(x)  (1 + λ − 2λ𝐺(𝑥))⏟              

ℎ(𝑥)

  ∑
(−1)𝑘Γ(𝑘)

𝑘!  Γ(𝑏 − 𝑘)

∞

𝑘=0

 [(1 + λ)𝐺(𝑥) − λ𝐺(𝑥)2]𝑎+𝑘−1⏟                    
𝐻(𝑥)𝑎+𝑘−1

   

Further, we can write the last equation as 

f(x) = ∑
(−1)𝑘Γ(𝑘)

B(a,b)𝑘! Γ(𝑏−𝑘)
∞
𝑘=0  g(x) 𝐺(𝑥)𝑎+𝑘−1. 

Finally, the above pdf can be expressed as a mixture of exp-G pdfs 

                                  𝑓(𝑥) = ∑ w𝑘𝑙
∞
𝑘,𝑙=0  ℎ𝑘+𝑙(𝑥),                                                      (10) 

where ℎ𝑘+𝑙(𝑥) is the exponentiated Dagum (ED) density with parameters  𝛼, 𝜃, 𝛽 and 

𝑘 + 𝑙 given by 

ℎ𝑘+𝑙(𝑥) = (𝑘 + 𝑙)𝛼𝜃𝛽𝑥
−𝜃−1(1 + 𝛼𝑥−𝜃)

−(𝑘+𝑙)𝛽−1
 

and 𝑤𝑘 = ∑
(−1)𝑘Γ(𝑘)

B(a,b)𝑘! Γ(𝑏−𝑘)(𝑎+𝑘)
∞
𝑘=0 . 

Thus, several mathematical properties of the BTD can be obtained simply from 

those properties of the exp-G family. Equation (10) is the main result of this section. 

The cdf of the BTG can also be expressed as a mixture of exp-G cdfs. By integrating 

(10), we obtain the mixture representation 

                                    𝐹(𝑥) = ∑ w𝑘𝑙
∞
𝑘,𝑙=0  𝐻𝑘+𝑙(𝑥),                                                  (11) 
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where 𝐻𝑘+𝑙(𝑥) = 𝐺(𝑥)
𝑘+𝑙 is the cdf of the exponentiated Dagum (ED) with parameters 

𝛼, 𝜃, 𝛽 and power parameter 𝑘 + 𝑙. 

 

4. Mathematical Characterizations 

In this section we provide some mathematical properties of the BTD distribution 

including the moments and moment generating function, quantiles and stress-strength 

model. 

4.1 Moments and moments generating function 

Moments are necessary and important in any statistical analysis, especially in 

applications. It can be used to study the most important features and characteristics of 

a distribution (e.g., tendency, dispersion, skewness and kurtosis). If 𝑋 has the 

𝐵𝑇𝐷(𝛼, 𝜃, 𝛽, 𝜆, 𝑎, 𝑏) then the 𝑟𝑡ℎ moment of 𝑋 are given by the following 

E(Xr) = ∫ xr
∞

0
f(x)dx =  α

r

θ B (β +
r

θ
, 1 −

r

θ
)  ∑ wkl

∞
k,l=0  (k + l)

r

θ. (12) 

The 𝑟𝑡ℎ moment will be defined only when 𝜃 > 𝑟. In particular, 

E(X) =  α
1
θ B (β +

1

θ
, 1 −

1

θ
)  ∑ wkl

∞

k,l=0

 (k + l)
1
θ,    if θ > 1,  

The variance, skewness and kurtosis of the BTD distribution can be calculated from 

(12) using the relations given below. 

Var(X) =  α
2

θ   
Γ(β)Γ(β+

2

θ
) Γ(

−2+θ

θ
)− Γ(β+

1

θ
)
2
 Γ(

−1+θ

θ
)
2

Γ(β)2
 ∑ wkl
∞
k,l=0  (k + 1)

2

θ,  

Skewness(X) = ∑ wkl
∞
k,l=0  (k + 1)

3

θ α
3

θ [ (Γ(β)2Γ (β +
3

θ
)  Γ (

−3+θ

θ
) −

3Γ(β)Γ (β +
1

θ
) Γ (β +

2

θ
)  Γ (

−2+θ

θ
) Γ (

−1+θ

θ
) + 2 Γ (β +

1

θ
)
2

 Γ (
−1+θ

θ
)
3

) ∕

Γ(β)3 (
Γ(β)Γ(β+

2

θ
) Γ(

−2+θ

θ
)− Γ(β+

1

θ
)
2
 Γ(

−1+θ

θ
)
2

Γ(β)2
)

3

2

], 

 

Kurtosis(X) = ∑ wkl 
∞
k,l=0 [−3 (Γ(β)2 (Γ(β)Γ (β +

4

θ
)  Γ (

−4+θ

θ
) +

3Γ (β +
2

θ
)
2

 Γ (
−2+θ

θ
)
2

− 4Γ (β +
1

θ
) Γ (β +

3

θ
)  Γ (

−3+θ

θ
)Γ (

−1+θ

θ
))) ∕

(Γ(β)Γ (β +
2

θ
)  Γ (

−2+θ

θ
) −  Γ (β +

1

θ
)
2

 Γ (
−1+θ

θ
)
2

)
2

]. 

 

The moment generating function, MGF, of a random variable X is defined by 
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𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥).  When X has the BTD (𝛼, 𝜃, 𝛽, 𝜆, 𝑎, 𝑏) then the MGF of X is given by 

MX(t) = E(e
tx) = ∑ wkl

∞

k,l=0

∑
tr

r!

∞

r=0

 β (α(k + l))
r
θ B (β +

r

θ
, 1 −

r

θ
) ,       θ > r. (13) 

 

 

4.2 Quantiles  

Quantile functions are in widespread use in statistics and often find representations in 

terms of lookup tables for key percentiles. The quantile function of a distribution is the 

real solution of 𝐹(𝑥𝑞) = 𝑞 for  0 ≤ 𝑞 ≤ 1. The quantiles of BTD distribution are obtained 

from (7) as 

          X = Q(u) = α
1

θ

[
 
 
 

−1 + (
(1+λ)+√(1+λ)2−4λ(Iu

−1(a,b))

2λ
)

−1

β

]
 
 
 

−1

θ

                                (14) 

where 𝐼𝑢
−1(𝑎, 𝑏) is the inverse of the incomplete beta function with parameters 𝑎 and 𝑏. 

As shown in Zea et al. (2012). 

 
4.3 Stress-strength model    

A stress-strength model describes the life of a component which has a random strength 

𝑋1 and is subjected to a random stress 𝑋2. The component functions satisfactorily as 

long as 𝑋1 > 𝑋2, and fails when 𝑋1 < 𝑋2. The probability 𝑅 = 𝑃𝑟(𝑋1 > 𝑋2) defines the 

component reliability. Stress-strength models have many applications especially in 

engineering concepts such as structures, deterioration of rocket motors, static fatigue 

of ceramic components, fatigue failure of aircraft structures and the aging of concrete 

pressure vessels.  

Consider 𝑋1 and 𝑋2 to be independently distributed, with 𝑋1~𝐵𝑇𝐷(α1, 𝜃, 𝛽, λ1, a1, b1) 
and 𝑋2~𝐵𝑇𝑅(α2, 𝜃, 𝛽, λ2, a2, b2). The cdf 𝐹1of 𝑋1 and pdf 𝑓2 of 𝑋2 obtained from (10) and 

(11), respectively. Then, 

𝑅 = 𝑃𝑟(𝑋1 > 𝑋2) = ∫ 𝑓2(𝑦)[1 − 𝐹1(𝑦)]𝑑𝑦
∞

0

 
 

= 1 + ∑ 𝑤𝑘𝑙
(1)

∞

𝑘,𝑙=0

∫ 𝑓2(𝑦)(1 + 𝛼(𝑘 + 𝑙)𝑥
−𝜃)−𝛽𝑑𝑦

∞

0

= ∑ 𝑤𝑘𝑙
(1)

∞

𝑘,𝑙=0

𝐴(𝑘, 𝑙), 
 

where 

𝑤𝑘𝑙
(𝑖) = ∑ (−1)𝑗+𝑘+𝑙 (

𝑏𝑖 − 1
𝑗

) (
𝑎𝑖 + 𝑗
𝑘

) (
𝑎𝑖 + 𝑗
𝑙
)

λ𝑙

𝐵(𝑎,𝑏)(𝑎𝑖+𝑗)
∞
𝑗=0          𝑖 = 1,2,  

and 
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𝐴(𝑘, 𝑙) = ∫ 𝑓2(𝑦)(1 + 𝛼(𝑘 + 𝑙)𝑥
−𝜃)−𝛽𝑑𝑦

∞

0

. 

Now, 

 

𝐴(𝑘, 𝑙) = ∑ 𝑤𝑟𝑠
(2)

∞

𝑟,𝑠=0

∫ (𝑟
∞

0

+ 𝑠)𝜃𝛽 α2𝑥
−𝜃−1[{(1 + ( α2(𝑟 + 𝑠) +  α1(𝑘 + 𝑙))𝑥

−𝜃)−𝛽−1 }]𝑑𝑦 

 

= ∑ 𝑤𝑟𝑠
(2)

∞

𝑟,𝑠=0

(𝑟 + 𝑠)α2
(𝑘 + 𝑙)α1 + (𝑟 + 𝑠)α2

. 
 

   Hence, 

𝑅 = 1 + ∑ 𝑤𝑘𝑙
(1)∞

𝑘,𝑙=0 ∑ 𝑤𝑟𝑠
(2)∞

𝑟,𝑠=0
(𝑟+𝑠)α2

(𝑘+𝑙)α1+(𝑟+𝑠)α2
, 

 

= 1 +∑∑𝑤𝑘
∗(1) 𝑤𝑟

∗(2)

∞

𝑟=0

𝑟α2
𝑘α1 + 𝑟α2

∞

𝑘=0

, 
(15) 

where 

wm
∗(i) = ∑ wkl

∗(i)

k,l:k+l=m

,     i = 1,2. 
 

 

5. Parameter Estimation  

In this section we will discuss about the method of parameter estimation of the beta 

transmuted Dagum distribution. The Maximum Likelihood Estimation is one of the most 

widely used estimation method for finding the unknown parameters. Asymptotic 

distribution of Θ̂ = (�̂�, 𝜃,̂ �̂�, �̂�, �̂�, �̂�) are obtained using the elements of the inverse Fisher 

information matrix. 

5.1 Maximum Likelihood Estimation  

Consider a random sample 𝑥1, 𝑥2, … , 𝑥𝑛 from 𝑋~𝐵𝑇𝐷(𝛼, 𝜃, 𝛽, 𝜆, 𝑎, 𝑏) distribution. The 

likelihood function can be written as 

𝐿(Θ) = (
α𝜃𝛽

 B(a,b)
)
𝑛
∏  xi

−𝜃−1𝑛
𝑖=1  (1 + 𝛼xi

−𝜃)−𝛽−1 (1 + λ − 2λ(1 +

𝛼xi
−𝜃)−𝛽) [((1 + 𝛼xi

−𝜃)−𝛽)]
a−1
[(1 + λ − λ(1 + 𝛼xi

−𝜃)−𝛽)]
a−1
[1 −

(1 + 𝛼xi
−𝜃)−𝛽(1 + λ − λ(1 + 𝛼xi

−𝜃)−𝛽)]
b−1

. 
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Now, the log-likelihood function denoted by 𝑙(Θ) : 
𝑙(Θ) =  n log α +n log 𝜃 +n log 𝛽 − nlog[B(𝑎, b )] − (𝜃 + 1)∑ log (xi)

n
i=1 +

∑ 𝐿𝑜𝑔𝑛
𝑖=1 [1 + λ − 2λ(1 + 𝛼xi

−𝜃)
−𝛽
] + (𝑎 − 1) [∑ 𝐿𝑜𝑔𝑛

𝑖=1 ((1 + 𝛼xi
−𝜃)

−𝛽
) +

∑ 𝐿𝑜𝑔𝑛
𝑖=1 (1 + λ−λ(1 + 𝛼xi

−𝜃)
−𝛽
)] + (𝑏 − 1)∑ 𝐿𝑜𝑔𝑛

𝑖=1 [1 − ((1 +

𝛼xi
−𝜃)

−𝛽
) (1 + λ−λ(1 + 𝛼xi

−𝜃)
−𝛽
)], 

(16) 

The entries of the score function is given by 

∂l(Θ)

∂α
=

n

  α 
− β(a − 1)∑

xi
−θ

1+αxi
−θ

n
i=1 + 2βλ∑

xi
−θ(1+αxi

−θ)
−β−1

(1+λ−2λ(1+αxi
−θ)

−β
)

n
i=1 +

βλ(a − 1)∑
xi
−θ(1+αxi

−θ)
−β−1

(1+λ−λ(1+αxi
−θ)

−β
)

n
i=1 − β(b −

1)∑
λ xi

−θ(1+αxi
−θ)

−2β−1
+xi

−θ(1+αxi
−θ)

−β−1
(1+λ−λ(1+αxi

−θ)
−β
)

1−(1+αxi
−θ)

−β
(1+λ−λ(1+αxi

−θ)
−β
)

n
i=1 , 

(17) 

𝜕𝑙(Θ)

𝜕𝜃
=

n

  𝛼 
− ∑ log xi + 𝛼𝛽(a − 1)∑

log xi  xi
−θ

1+αxi
−θ   

n
i=1

n
i=1 −

2βλ∑
log xi xi

−θ(1+αxi
−θ)

−β−1

(1+λ−2λ(1+αxi
−θ)

−β
)

n
i=1 − 𝛼𝛽λ(a − 1)∑

logxi xi
−θ(1+αxi

−θ)
−β−1

(1+λ−λ(1+αxi
−θ)

−β
)

n
i=1 +

𝛼β(b − 1)∑
λ logxi xi

−θ(1+αxi
−θ)

−2β−1
+logxi   xi

−θ(1+αxi
−θ)

−β−1
(1+λ−λ(1+αxi

−θ)
−β
)

1−(1+αxi
−θ)

−β
(1+λ−λ(1+αxi

−θ)
−β
)

n
i=1 , 

(18) 

∂l(Θ)

∂β
=
n

β
− (a − 1)∑ log(1 + αxi

−θ) n
i=1 + 2λ∑

log(1+αxi
−θ) (1+αxi

−θ)
−β

(1+λ−2λ(1+αxi
−θ)

−β
)

n
i=1 +

λ(a − 1)∑
log(1+αxi

−θ) (1+αxi
−θ)

−β

(1+λ−2λ(1+αxi
−θ)

−β
)

n
i=1 + (b −

1)∑
−λ log(1+αxi

−θ) (1+αxi
−θ)

−2β
+log(1+αxi

−θ) (1+αxi
−θ)

−β
(1+λ−λ(1+αxi

−θ)
−β
)

1−(1+αxi
−θ)

−β
(1+λ−λ(1+αxi

−θ)
−β
)

n
i=1 , 

(19) 

∂l(Θ)

∂λ
= ∑

1−2 (1+αxi
−θ)

−β

(1+λ−2λ(1+αxi
−θ)

−β
)

n
i=1 + (a − 1)∑

1−(1+αxi
−θ)

−β

(1+λ−λ(1+αxi
−θ)

−β
)

n
i=1 −

(b − 1)∑
(1+αxi

−θ)(1−(1+αxi
−θ)

−β
) +log(1+αxi

−θ) (1+αxi
−θ)

−β
(1+λ−λ(1+αxi

−θ)
−β
)

1−(1+αxi
−θ)

−β
(1+λ−λ(1+αxi

−θ)
−β
)

n
i=1 , 

(20) 

∂l(Θ)

∂a
= −n[Ψ(a) − Ψ(a + b)] + ∑ Logn

i=1 (1 + αxi
−θ)

−β
+ ∑ Logn

i=1 (1 +

λ−λ(1 + αxi
−θ)

−β
), 

(21) 

𝜕𝑙(Θ)

𝜕𝑏
= −n[Ψ(𝑏) − Ψ(a + b)] + ∑ Logn

i=1 [1 − ((1 + 𝛼xi
−𝜃)

−𝛽
) (1 +

λ−λ(1 + 𝛼xi
−𝜃)

−𝛽
)], 

(22) 

Where Ψ(𝑥) is the digamma function defined by Ψ(𝑥) =
𝑑 log𝛤(𝑥)

𝑑𝑥
 , and  𝛤(𝑥) is the 

Gamma function. The maximum likelihood estimators �̂�, 𝜃,̂ �̂�, �̂�, �̂�, �̂� of the unknown 

parameters 𝛼, 𝜃, 𝛽, 𝜆, 𝑎, 𝑏  respectively, can be obtained by setting the score vector to 
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zero and solving the system of nonlinear equations simultaneously. Since there is no 

closed form solution of these non-linear system of equations, we can use numerical 

methods such as the quasi-Newton algorithm to numerically optimize the log-likelihood 

function given in (16) to get the maximum likelihood estimates of the parameters 

𝛼, 𝜃, 𝛽, 𝜆, 𝑎, 𝑏. To study the properties of the estimators of the beta transmuted Dagum 

distribution and their performances. There are many measures that can be used to get 

information about the performance of the estimators. The bias and mean square error 

(MSE) are such useful measures.  

5.2 Simulation Study 

A simulation study is carried out to investigate the performance of the MLEs. We take 

sample sizes to be 𝑛 ∈ {10,50,100,150,200,300,500}, and generate observations from 

a BTD distribution with parameters α = 0.9, 𝜃 = 0.8, 𝛽 = 0.7, 𝜆 = 0.6, 𝑎 = 0.5 𝑎𝑛𝑑 𝑏 =
0.4. The bias and MSE are calculated by: 

Bias(Θ̂) =
1

1000
∑(Θ̂i − Θ)

1000

i=1

 

and 

MSE(Θ̂) =
1

1000
∑(Θ̂i − Θ)

2
1000

i=1

 

respectively. The process is replicated 1000 times, and the average bias, along with 
the mean squared error are presented in Table 1.  
 

Table1: Bias and MSE (in parentheses) for the BTD distribution. 

n α̂ θ̂ β̂ �̂� â b̂ 

10 0.745241 

(0.57569) 

0.851783 

(1.26836) 

0.497498 

(2.24467) 

0.952656 

(0.90786) 

0.698317 

(0.49047) 

0.938319 

(0.88701) 

50 0.530543 

(0.37818) 

0.640307 

(1.03910) 

0.333568 

(1.77811) 

0.724872 

(0.81530) 

0.549683 

(0.30219) 

0.659199 

(0.57458) 

100 0.346745 

(0.21526) 

0.429959 

(0.84866) 

0.304044 

(1.55107) 

0.501654 

(0.63214) 

0.416393 

(0.23375) 

0.425698 

(0.41286) 

150 0.155984 

(0.12387) 

0.242809 

(0.53269) 

0.122452 

(1.22993) 

0.348147 

(0.40652) 

0.309345 

(0.19098) 

0.316724 

(0.30759) 

200 0.109292 

(0.02694) 

0.178652 

(0.28369) 

0.102153 

(1.10462) 

0.206416 

(0.21292) 

0.138416 

(0.10986) 

0.164331 

(0.10547) 

300 0.035116 

(0.02091) 

0.030129 

(0.12121) 

0.032129 

(0.74534) 

0.080833 

(0.06231) 

0.105385 

(0.08965) 

0.066245 

(0.04909) 

500 0.014638 

(0.01032) 

0.012033 

(0.01631) 

0.010915 

(0.44129) 

0.039743 

(0.01888) 

0.038246 

(0.02705) 

0.032586 

(0.01825) 

 
 

From Table 1 it is observed that as the sample size increases, the average biases 

and mean squared errors decrease. This verifies the consistency properties of the 

estimates. 
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6. Application  

In this section, we provide application to the real data set to prove empirically the 

potentiality of the BTD distribution. We also compare the fits of the BTD, transmuted 

Dagum (TD), beta Dagum (BD) and Dagum distributions by means of data set. The 

data set corresponds to remission times (in months) of a random sample of 128 bladder 

cancer patients given in Lee & Wang (2003). This data is given in Table 2 and The 

descriptive summary of the data is provided in Table 3. 
 

Table 2: Data on 128 bladder cancer patients. 
0.080 2.090 3.480 4.870 6.940 8.660 13.11 23.63 0.200 2.230 
3.520 4.980 6.970 9.020 13.29 0.400 2.260 3.570 5.060 7.090 
9.220 13.80 25.74 0.500 2.460 3.640 5.090 7.260 9.470 14.24 
25.82 0.510 3.700 2.540 5.170 7.280 9.740 14.76 26.31 0.810 
2.620 3.820 5.320 7.320 10.06 14.77 32.15 2.640 3.880 5.320 
7.390 10.34 14.83 34.26 0.900 2.690 4.180 5.340 7.590 10.66 
15.96 36.66 1.050 2.690 4.230 5.410 7.620 10.75 16.62 43.01 
1.190 2.750 4.260 5.410 7.630 17.12 46.12 1.260 2.830 4.330 
5.490 7.660 11.25 17.14 79.05 1.350 2.870 5.620 7.870 11.64 
17.36 1.400 3.020 4.340 5.700 7.930 11.79 18.10 1.460 4.400 
5.850 8.260 11.98 19.13 1.760 3.250 4.500 6.250 8.370 12.02 
2.020 3.310 4.510 6.540 8.530 12.03 20.28 2.020 3.360 6.760 
12.07 21.73 2.070 3.360 6.930 8.650 12.63 22.69   

 

To determine the optimum model, we also compute the estimated log-likelihood 

values 𝑙,  Akaike Information Criteria  (AIC), consistent Akaike information criterion 

(CAIC), Bayesian information criterion (BIC), Hannan Quinn information criterion 

(HQIC), Anderson-Darling (𝐴∗), Crameér–von Mises (𝑊∗) and Kolmogorov Smirnov 

(K-S) to compare the four fitted models. The statistics AIC, CAIC, BIC, HQIC, 𝐴∗, 𝑊∗ 

and K-S are given by 
 

𝐴𝐼𝐶 = 2𝐾 − 2𝑙(�̂�), 

𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘+1)

𝑛−𝑘−1
, 

𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2𝑙(�̂�), 

𝐻𝑄𝐼𝐶 = 2𝑘𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) − 2𝑙(�̂�), 

𝐴∗ = 𝐴𝑛
2 = −𝑛 −

1

𝑛
∑ (2𝑖 − 1)𝑛
𝑖=1 [𝑙𝑜𝑔 (𝐹𝐵𝑇𝐷(𝑥𝑖, �̂�, 𝜃,̂ �̂�, �̂�, �̂�, �̂�)) + 𝑙𝑜𝑔 (1 −

𝐹𝐵𝑇𝐷(𝑥𝑖, �̂�, 𝜃,̂ �̂�, �̂�, �̂�, �̂�))]
2

, 

𝑊∗ = 𝑊𝑛
2 =

1

12𝑛
+ ∑ [𝐹𝐵𝑇𝐷(𝑥𝑖, �̂�, 𝜃,̂ �̂�, �̂�, �̂�, �̂�) −

2𝑖−1

2𝑛
]
2

𝑛
𝑖=1 , 

and 



338  Hurairah & Hassen 
 

𝐾 − 𝑆 = 𝑚𝑎𝑥
𝑖
[
𝑖

𝑛
− 𝐹𝐵𝑇𝐷(𝑥𝑖, �̂�, 𝜃,̂ �̂�, �̂�, �̂�, �̂�), 𝐹𝐵𝑇𝐷(𝑥𝑖, �̂�, 𝜃,̂ �̂�, �̂�, �̂�, �̂�) −

𝑖−1

𝑛
]. 

 
Table 3: Descriptive Statistics for the data set. 

n Mean Median SD Vari. Ske. Kurt. Min. Max. 

128 9.366 6.395 10.508 110.425 3.287 18.483 0.08 79.05 

 

The statistics 𝐴∗and 𝑊∗ are described in details in Chen & Balakrishnan (1995). In 

general, the smaller the values of these statistics, the better the fit to the data. Table 4 

list the MLEs and their corresponding standard errors (in parentheses) of the model 

parameters. Table 5 lists the goodness-of-fits statistics from the fitted models.  
 

Table 4: MLEs and their standard errors (in parentheses) for the data set. 

Distribution α̂ θ̂ β̂ �̂� â b̂ 

BTD 1.27124 
(0.01176) 

0.19211 
(0.33037) 

1.22086 
(0.64109) 

0.60101 
(0.42042) 

0.89641 
(0.04386) 

0.79715 
(0.03202) 

BD 0.94883 
(0.08572) 

1.34553 
(0.47009) 

0.05548 
(0.79009) 

- 
- 

0.65840 
(0.07601) 

0.57668 
(0.06433) 

TD 1.16397 
(0.10300) 

2.70655 
(0.64010) 

0.97023 
(0.95317) 

0.58200 
(0.46134) 

- 
- 

- 
- 

D 1.08554 
(0.15830) 

0.19354 
(0.71774) 

1.10559 
(1.12413) 

- 
- 

- 
- 

- 
- 

 

Table 5 shows that the BTD distribution could be chosen as the best model among 

the fitted models since these models have the lowest values of the −2ℓ, AIC, CAIC, 

BIC, HQIQ, 𝐴∗, 𝑊∗ and KS. 
 

Table 5: The statistics AIC, CAIC, BIC, HQIC, 𝐴∗, 𝑊∗ and K-S for the data set. 

Distribution −2ℓ AIC CAIC BIC HQIQ 𝐴∗ 𝑊∗ K-S 

BTD 959.26 969.26 969.75 983.52 975.05 0.3558 0.057 0.026 
BD 975.71 987.71 988.39 1004.82 994.66 0.5068 0.074 0.057 
TD 1015.06 1007.06 1006.74 995.651 1002.4 0.8444 0.094 0.085 
D 1076.76 1082.76 1082.96 1091.32 1086.2 1.3296 0.154 0.138 

 
7. Concluding Remarks 

In this study, we have introduced the so-called beta transmuted Dagum (BTD) 

distribution. This is a generalization of the transmuted Dagum distribution using the 

genesis of the beta distribution. Many distributions including Dagum, beta Dagum, and 

transmuted Dagum are embedded in this newly developed BTD distribution. We 

provide some of its mathematical properties including the moments, moment 

generating functions, quantile function and Stress-strength model have been provided. 

We discuss the maximum likelihood estimation of the model parameters. The 

maximum likelihood estimation procedure is presented. We assess the performance of 

the maximum likelihood estimators in terms of biases and mean square of errors by 

means of simulation studies. The usefulness of the new models is illustrated by means 

of three real data sets. The new model provide consistently better fits than other 

competitive models for these data sets. 
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