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Abstract 

 This paper investigates a case study on short term forecasting for East Kalimantan, 

with emphasis on special days, such as public holidays. A time series of load demand 

electricity recorded at hourly intervals contains more than one seasonal pattern.  There 

is a great attraction in using a modelling time series method that is able to capture triple 

seasonalities. The Triple SARIMA model has been adapted for this purpose and 

competitive for modelling load.  Using the least squares method to estimate the 

coefficients in a triple SARIMA model, followed by model building, model assumptions 

and comparing model criteria, we propose and demonstration the triple Seasonal 

Autoregressive Integrated Moving Average model with AIC 290631.9 and SBC 290674.2 

as the best model for this study. The Triple seasonal ARIMA is one of the alternative 

strategy to propose accurate forecasts of electricity load Kalimantan data for planning, 

operation maintenance and market related activities.  
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1. Introduction 

Load forecasting is an important problem especially in obtaining the high accuracy 

level. Short-term load forecasting has been a fundamental of major interest for the 

electricity industry. In this decade, the short time load forecasting is frequently 

developed by researchers. Traditionally, hourly forecasts with a lead time of between 

one hour and seven days are required for the scheduling and control of power 

systems. Accurate short-term forecasts of electricity demand (load) are crucial for 

making informed decisions regarding unit commitment, energy transfer scheduling, 

and load frequency control of the power systems.  

Currently anomalous load conditions models (see, Rahman & Bhatnagar, (1988), 

Hyde & Hodnett, (1993), Hyde & Hodnett, (1997))  can capture special days. For 

handling not normal working days pattern, the model may need another anomalous 

method. anomalous load conditions  is a one of contemporary approaches that is 

commonly used to model time series with special days (see, Kim et al., 2000), Song 

et al., 2005, Fidalgo & Lopes, 2005). Some  researchers have suggested anomalous 

approaches with load conditions in modelling electricity data can be found in 

Dordonnat et al., (2008), Soares & Medeiros, (2008),  and Srinivasan et al., (1995). 

Arora and Taylor Arora & Taylor, (2013) implemented anomalous for Great Britain with 

nine years of half-hourly load data. In this paper, triple seasonal ARIMA performance 

for forecasting accuracy with consider and select polynomial function the orders for 

AR and MA. The study also assesses the advantage of integrating a residual 

autocorrelation and partial autocorrelation.  

Electricity demand is often modelled in terms of weather variable. However, 

univariate methods are frequently considered to be sufficient for short lead times 

because the weather variables tend to change in a smooth fashion over short time 

frames, and this will be captured in the demand series itself. A variety of univariate 

methods have been used for short-term load forecasting.  

Many different methods and models have been proposed by researchers using 

Triple seasonal ARIMA time series for load forecasting including anomalous load 

conditions (Kim et al., 2000), (Arora & Taylor, 2013), and (Fidalgo & Lopes, 2005),  

Neural Network for anomalous load periods (Lamedica et al., 1996). Fuzzy linear 

regression method  for load forecasting with variety of approaches such as  the 

holidays (Song et al., 2005), Fuzzy Neural computation (Srinivasan et al., 1995), State 

space model (Dordonnat et al., 2008) and Triple seasonal methods have also been 

applied for load forecasting. 

In this paper, our primary contribution is the extention of the triple seasonal 

methods to include the yearly seasonal cycle. However, for the reason of parsimony 

and to find one that there is true AR or MA model for the consideration of higher order 

selection models. We also consider the polynomial of order triple ARIMA including all 

lags by looking at the sample ACF and PACF and autocorrelation check for white 

noise.  

 

2. Methods 

This is a special case of the general rule based triple seasonal ARIMA model as 

follows:
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where 

𝑍𝑡
   

                           =  the load observed at period  t,  
c                                          =  constant parameter,  
B                                        =  the backward shift operator or lag operator,  
𝜑𝑝, 𝛷𝑃1

, 𝛺𝑃2
, and 𝛤𝑃3

           =  AR  polynomial functions of order p, P1, P2 and P3,  

𝜃𝑞 , 𝛩𝑄1
, 𝛹𝑄2

, and 𝛬𝑄3
     =  MA  polynomial functions of order q, Q1, Q2 and Q3,  

𝑎𝑡
(𝑁)

~𝑁𝐼𝐷(0, 𝜎𝑁
2)        =  the model errors for normal,  

𝑎𝑡
(𝑆)

~𝑁𝐼𝐷(0, 𝜎𝑆
2)         =  the model errors for special days, 

variances 
2
N and 

2
S  while NID refers to a Normal and Independently distributed 

process.  

The function )( 3S
B and )( 3S

B accommodate the yearly seasonal effect for normal 

days, the function )( 3S
B  and  )( 3S

B  accommodate the yearly seasonal effect for 

special days.
 

For example the multiplicative rule based triple seasonal ARIMA model be 

expressed as 𝜑1 = 0, 𝛷1 = 0, 𝛺1 = 0, 𝛤1 = 1and differencing is a technique that can 

also be used to remove seasonal components and trends with 𝑑 = 1, 𝐷1 = 1, 𝐷2 =
1, 𝐷3 = 1, 𝑆1 = 24, 𝑆2 = 168, 𝑆3 = 8760and 𝜃1 = 0, 𝛩1 = 0, 𝛹1 = 0, 𝛬1 = 0 hence the 

model can be expressed as model rule based triple seasonal  ARIMA (0,1,0) 

(0,1,0)24(0,1,0)168(0,1,1)8760. 
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) 

where 

𝜉(𝐵𝑆3(𝑡)) = 1 + 𝜏1𝐵8760 + 𝜏2𝐵8760+𝑆3(𝑡−8760) + 𝜏3𝐵8760+𝑆3(𝑡−8760)+𝑆3(𝑡−𝑆3(𝑡−8760)) 
 

𝜁(𝐵𝑆3(𝑡)) = 1 + 𝜔1𝐵8760 + 𝜔2𝐵8760+𝑆3(𝑡−8760) + 𝜔3𝐵8760+𝑆3(𝑡−8760)+𝑆3(𝑡−𝑆3(𝑡−8760)) 
 

𝜆(𝐵𝑆3(𝑡)) = 1 + 𝜇1𝐵8760 + 𝜇2𝐵8760+𝑆3(𝑡−8760) + 𝜇3𝐵8760+𝑆3(𝑡−8760)+𝑆3(𝑡−𝑆3(𝑡−8760)) 
 

𝜅(𝐵𝑆3(𝑡)) = 1 + 𝜐1𝐵8760 + 𝜐2𝐵8760+𝑆3(𝑡−8760) + 𝜐3𝐵8760+𝑆3(𝑡−8760)+𝑆3(𝑡−𝑆3(𝑡−8760)) 
 

 
3. Results and Discussion 

The data used is year hourly load measured in Megawatt (MW) from  January 01, 

2015 to  December 31, 2018. They are gathered from PLN AP2B SISTEM KALTIM-

Balikpapan, KM. 15 Karang Joang Nort Balikpapan,  Mahakam East Kalimantan 

electricity utility company, Balikpapan Indonesia.  

The data used in this study were obtained from the East Kalimantan electricity 

utility company, PLN, main gate Mahakam  Balikpapan.   The data were  divided  into 
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sets: Initialization set and test set. Figure 2 plots the initialization set data, it is  clear 

from Figure 1 that Mahakam-East Kalimantan load demand data is non-stationary. 

The ACF and PACF in figure 2 and figure  3 respectively, shows the capture of 

seasonal pattern,  plotting the figure 4 is plot load series with the first differencing  

[(1 − 𝐵), 𝑑 = 1)] , figure 5 is the  plot data series after  the daily seasonal differencing 

with length 24[(1 − 𝐵)(1 − 𝐵24), 𝑑 = 1, 𝐷1 = 1)] , figure 6 shows load the output  plot 

series  after  the weekly seasonal differencing with length 168 [(1 − 𝐵)(1 − 𝐵24)(1 −
𝐵168), 𝑑 = 1, 𝐷1 = 1, 𝐷2 = 1)] and it is clear from figure 7,  load electricity is stationary  

pattern after fourth times differencing with  non-seasonal, daily, weekly and yearly 

periods and figure 7 is load series  for [(1 − 𝐵)(1 − 𝐵24)(1 − 𝐵168)(1 − 𝐵8760), 𝑑 =
1, 𝐷1 = 1, 𝐷2 = 1, 𝐷3 = 1)].  The ACF and PACF in figure 8 for differencing for [(1 −
𝐵), 𝑑 = 1)] load ,  figure  9 for  seasonal differencing for [(1 − 𝐵)(1 − 𝐵24), 𝑑 = 1, 𝐷1 =

1)] load,  figure 10 daily and weekly seasonal differencing for [(1 − 𝐵)(1 − 𝐵24)(1 −
𝐵168), 𝑑 = 1, 𝐷1 = 1, 𝐷2 = 1)] load and daily,  weekly and yearly in  figure 11. 

differencing for [(1 − 𝐵)(1 − 𝐵24)(1 − 𝐵168)(1 − 𝐵8760), 𝑑 = 1, 𝐷1 = 1, 𝐷2 = 1, 𝐷3 = 1)] 
load shows clearly the presence of seasonal. 
 

 

Figure 1: Electricity load in Mahakam - East Kalimantan 
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Figure 2: Autocorrelation  Function load before non-seasonal  and seasonal 

differencing 

 

   

 

Figure 3: Partial Autocorrelation function load before non-seasonal  and seasonal 

differencing 
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Figure 4: An output plot series  [(1 − 𝐵), 𝑑 = 1)] 

 

 

Figure 5: An output  plot series [(1 − 𝐵)(1 − 𝐵24), 𝑑 = 1, 𝐷1 = 1)] 
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Figure 6: An output  plot series [(1 − 𝐵)(1 − 𝐵24)(1 − 𝐵168), 𝑑 = 1, 𝐷1 = 1, 𝐷2 = 1)] 

 

Figure 7: Load series  for )]1,1,1,1),1)(1)(1)(1[( 321

876016824 ====−−−− DDDdBBBB  
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Figure 8: Differencing for )]1),1[( =− dB load 

 

 

 

Figure 9: Differencing for )]1,1),1)(1[( 1

24 ==−− DdBB load 
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Figure 10: Differencing for )]1,1,1),1)(1)(1[( 21

16824 ===−−− DDdBBB load 

 

 

 

Figure 11: Differencing for )]1,1,1,1),1)(1)(1)(1[( 321

876016824 ====−−−− DDDdBBBB

load 
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Table 1: Descriptive Statistics after Non-seasonal and seasonal Differencing 

Non-seasonal differencing with length 1 )]1),1[( =− dB  

Count  Mean  SE Mean TrMean  StDev  Variance 

43816  0.0041  0.0915 -0.525  19.155  366.924 

          

CoefVar  Sum  Squares Minimum  Q1  Median 
469921.07  178.500  1.60672E+07 -394.190  -10.650  -1.575 

          
Q3  Maximum  Range IQR  Skewness  MSSD 

9.370  412.240  806.430 20.020  -0.29  284.610 

          

Daily seasonal differencing with length 24 ]1,1),1)(1[( 1

24 ==−− DdBB  

          

Count  Mean  SE Mean TrMean  StDev  Variance 

43816  0.0002  0.0798 -0.0165  16.693  278.646 

          

CoefVar  Sum  Squares Minimum  Q1  Median 

9421570.01  7.750  1.21883E+07 -407.400  -6.090  -0.0100 

          

Q3  Maximum  Range IQR  Skewness  MSSD 

5.980  419.680  827.080 12.070  0.11  339.818 

          

Weekly seasonal differencing with length 168 )]1,1,1),1)(1)(1[( 21

16824 ===−−− DDdBBB  

          

Count  Mean  SE Mean TrMean  StDev  Variance 

43816  0.000  0.112 0.034  23.297  542.734 

          

CoefVar  Sum  Squares Minimum  Q1  Median 

5034691.92  20.140  2.36220E+07 -424.650  -9.140  0.070 

          

Q3  Maximum  Range IQR  Skewness  MSSD 

9.055  416.230  840.880 18.195  -0.02  670.109 

          

Yearly seasonal differencing  with length 8760

)]1,1,1,1),1)(1)(1)(1[( 321

876016824 ====−−−− DDDdBBBB  

          

Count  Mean  SE Mean TrMean  StDev  Variance 

43816  0.001  0.153 -0.013  28.533  814.125 

          

CoefVar  Sum  Squares Minimum  Q1  Median 

2305709.03  42.900  2.82225E+07 -449.660  -8.930  0.000 

          

Q3  Maximum  Range IQR  Skewness  MSSD 

8.680  436.710  886.370 17.610  -0.02  1017.924 
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Figure 12: Histogram after differencing )]1,1,1,1,[ 321
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The load demand series after three time differencing which are non-seasonal 

differencing, daily seasonal differencing and weekly seasonal differencing indicates 

that load series is stationary series are shown in figure 3. There are several non 

seasonal lags (lag 1, lag 2,..., lag 8) and the ACF tends to be cut off after lag 1 whereas 

PACF diminishes dies down. On the other hand, ACF dan PACF at seasonal lags (lag 

12, lag 24, ...) tend to cut off after lag 12, lag 24, lag 168 and lag 8760.  

 

Model 1 
The first selected Triple Seasonal ARIMA (0,1,1) (0,1,1)24(0,1,1)168(0,1,1)8760 

𝛽(𝐵)(1 − 𝐵)(1 − 𝐵24)(1 − 𝐵168)(1 − 𝐵8760)𝑍𝑡 = 𝛿(𝐵)𝜓(𝐵)𝜁(𝐵)𝑎𝑡            (3) 

 
where 

𝛽(𝐵) = (1 + 0.27997𝐵)  

𝛿(𝐵) = (1 − 0.2895𝐵)(1 − 0.82912𝐵24)   

𝜓(𝐵) = (1 − 0.87918𝐵168)  

𝜁(𝐵) = (1 − 0.45053𝐵8760) 

 
Model 2 
The second selected Triple Seasonal ARIMA (0,1,2) (0,1,2)24(0,1,2)168(0,1,2)8760 

𝛽(𝐵)(1 − 𝐵)(1 − 𝐵24)(1 − 𝐵168)(1 − 𝐵8760)𝑍𝑡 = 𝛿(𝐵)𝜓(𝐵)𝜁(𝐵)𝑎𝑡     (4) 
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where 

𝛽(𝐵) = (1 − 0.03302𝐵)  

𝛿(𝐵) = (1 − 0.03302𝐵2)(1 − 0.83622𝐵24)   

𝜓(𝐵) = (1 − 0.88137𝐵168)  

𝜁(𝐵) = (1 − 0.45277𝐵8760) 

 
Model 3 
The third selected Triple Seasonal ARIMA  (1,1,0) (1,1,0)24(1,1,0)168(1,1,0)8760 

)5()45047.01)(87918.01)(82863.01)(1391.01)(27997.01( 8760168242

tt aZBBBBB =−−−−+  

Model 4 
The fourth selected Triple Seasonal ARIMA (1,1,2) (1,1,0)24(1,1,0)168(1,1,0)8760 

(1 + 0.24893𝐵)(1 + 0.47536𝐵24)(1 + 0.4926𝐵168)(1 + 0.42524𝐵8760)𝑍𝑡 = 𝑎𝑡  (6) 

 
Model 5  
The fifth selected Triple Seasonal ARIMA (2,1,1) (2,1,1)24(2,1,1)168(2,1,1)8760 

(1 + 0.03621𝐵2)(1 − 0.473𝐵24)(1 − 0.491𝐵168)(1 − 0.425𝐵8760)𝑍𝑡 = 𝑎𝑡     (7) 

 
We have seen that a simple and widely applicable stochastic model for the analysis 

of  nonstationary time series, which contains seasonal component is triple seasonal 

multiplicative Model 1 .  

 
Table 2: the autoregressive  and moving average  coefficients in Triple  Seasonal 

ARIMA 

  The ARIMA Procedure Conditional Least Squares Estimation 

Parameter  Estimate  Standard Error t  Value  Approx Pr > |t|  Lag 

MA1,1  0.13910  0.005543 25.09  <.0001  1 

MA2,1  0.82863  0.0030545 271.28  <.0001  
2
4 

MA3,1  0.87918  0.0026383 333.24  <.0001  
16
8 

MA4,1  0.45047  0.005338 84.39  <.0001  8760 
AR1,1  -0.27997  0.005375  -52.08  <.0001  1 

          

          
Variance 
Estimate 265.1986       
Std Error 
Estimate 16.28492       

AIC  290631.9       
SBC  290674.2       
Number of 
Residuals 34523       
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All the parameters of this model are significant at alpha 5% significance level with 

white noise residuals based on Ljung-Box  statistic Q* until lags 24. Table 1 shows 

three of our diagnostic tools in one display a sequence plot of the standardized 

residuals, the sample ACF of the residuals, and p-values for the Ljung-Box test 

statistic for a whole range of values of k from 6 to 48. The horizontal dashed line at 

5% helps judge the size of the p-values. It is seen that the series has significant 

autocorrelation at lags 1 and 24. 

The standard error on the lag 1 =  0.0055, lag 24= 0.0030, lag 168 = 0.0026 and 

lag 8760 = 0.005, models seem to be catch on  the dependence structure of the color 

property time series quite well. The horizontal dashed line at 5% helps judge the size 

of the p-values.  It is seen that the series has significant autocorrelation at lags 1 and 

24.  The estimated MA1,1 with 13%, MA2,1 with 82%,  MA3,1  with 87%, MA4,1 with 

45%, and AR1,1 with -27% models seem to be catch on  the dependence structure of 

the color property time series quite well.  Specifically, the models are first-order 

moving average, or MA1,1, MA2,1, MA3,1, MA4,1, AR1,1  models with standard error 

0.5%, 0.3%, 0.2%, 0.5% and 0.5%  respectively.   
 

Table 3: The SAS output of the first model. 

  Correlations of Parameter Estimates 

Parameter  MA1,1  MA2,1 MA2,2  MA2,3  MA3,1 

MA1,1  1.000  -0.026  -0.007  0.005   -0.274 

MA2,1   -0.026  1.000 -0.223   -0.052  0.035 

MA3,1   -0.007  -0.223 1.000   -0.047  0.011 

MA4,1   0.005  -0.052 -0.047  1.000  0.004 

AR1,1  -0.274  0.035 0.011  0.004  1.000 

 

These two criteria penalize the sum of  squared residuals for including additional 

parameters in the model. Models that have small values of the AIC or SBC are 

considered good models. Good models are obtained by minimizing either the AIC or 

BIC. Our preference is to use the SBC. It generally results in smaller, and hence 

simpler model and so its use is consistent with the time-honored model-building 

principle of parsimony (all other thing being equal, simple models are preferred to 

complex ones. In this section, we present the AIC and SBC results for hourly lead 

times up to one day ahead calculated for the one month post sample period of each 

of the two series of load data.  The MAPEs of one-step and l-step ahead out-sample 

forecasts using Model 1 presented in Table 2.  Because the model in (4) is adequate, 

we can use it to forecast the future employment figures. For reasons of parsimony, 

we deferred from considering higher order models. We investigated differencing, but 

this led to poorer forecast accuracy. As discussed, for a given forecast origin, say t = 

9098, ... , 43480, forecasts can be calculated directly from the difference equation.  

Thus, the l-step ahead forecast from the time origin t = 9098 , ... , 43480 is given 

by 
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++−−+−+= −+−+−+−+−+−+−++ 38538433733625241 ltltltltltltltlt ZZZZZZZZ  (8) 

38433733625241 65.023.085.004.076.005.0 −+−+−+−+−+−++ −−+−+− ltltltltltltlt aaaaaaa   

 

 

The simulated l-step-ahead forecast errors are typically used for forecast 

monitoring. The reason for this is that changes in the underlying time series will also 

typically be reflected in the  forecast errors.  

 

Figure 13: The simulated l step ahead in-sample forecasts the Model 1 using triple 

seasonal ARIMA. 

There is no guarantee that allowing for the daily, weekly and yearly  cycle in a time 

series model will lead to improved accuracy for forecasting to just one day ahead. If a 

time series consists of uncorrelated observations in this time series are normally 

distributed, the time series is  Gaussian white noise. Ideally forecast errors are 

Gaussian white Noise. The  normal probability plot indicate the residuals are 

approximately normally distributed and Figure 15 shows that, for the time series plot 

of the residual from forecasting Model 1.  
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Figure 14: The simulated l step ahead out-sample forecasts the Model 1 using triple 

seasonal ARIMA 

 

Figure 15: The simulated l step ahead  forecasts the Model 1 using triple seasonal 

ARIMA 

 

Residuals are useful in checking whether a model has adequately captured the 

information in the data. A good forecasting method will yield residuals with the 

residuals have zero mean. If the residuals have a mean other than zero, then the 

forecasts are biased. The underlying rationale for this is that if the model were correct  

and the parameter values known exactly, then the residuals would be simply the true  

errors from which the data are assumed to have been generated. Therefore, if the 

form of the model is correct and the parameters are estimated, the residuals 

calculated from the fitted model should (for large n, at least, as the parameter 
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estimates generally are consistent) behave nearly as though they were white noise; 

and diagnostic checks and tests of  fit based on this similarity  of  white noise.  Plot of 

the residuals  from this model indicate that in addition to an underlying outlier, there 

is additional structure.  
 

Table 4: Model for Triple Seasonality 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 

AIC 289528.9 302484.8 291126 290631.9 293053.1 

SBC 289571.2 302527.1 291159.8 290674.2 293086.9 

Variance 

Estimate 

256.8598 374.3094 269.0294 265.1986 284.4739 

Std Error 

Estimate  

16.02685 19.34708 16.40211 16.28492 16.86635 

 

Once parameters have been estimated, we check on the adequacy of the model 

for the load data series. The estimate values of these regular, seasonal and 

nonseasonal parameters of  Model 1 until  Model 5 are greater than 2%, with highly 

significant at alpha less than 0.0001 significance level.  
 

4. Conclusion 

In this paper, presented a case study on load forecasting for East Kalimantan, with 

emphasis on  forecasting load on special days using a triple Seasonal ARIMA method 

for Mahakam  load data.  In comparison with that study, modelling load  for East 

Kalimantan is more challenging, due to the relatively large number of different types 

of special days in Mahakam.  

 

 Acknowledgments. This research was supported by RISTEK DIKTI under its 
LPPM No. 2837/IT10.II/PPM.01/2020 The researchers are grateful for this support.  

References 

Arora, S., & Taylor, J. W. (2013). Short-term forecasting of anomalous load using rule-
based triple seasonal methods. IEEE Transactions on Power Systems, 28(3): 
3235–3242. 

Dordonnat, V., Koopman, S. J., Ooms, M., Dessertaine, A., & Collet, J. (2008). An 
hourly periodic state space model for modelling French national electricity load. 
International Journal of Forecasting, 24(4): 566–587. 

Fidalgo, J., & Lopes, J. P. (2005). Load forecasting performance enhancement when 
facing anomalous events. IEEE Transactions on Power Systems, 20(1): 408–415. 



Indonesian Journal of Statistics and Its Applications. Vol 5 No 2 (2021), 243 - 259  259 

 

 
 

Hyde, O., & Hodnett, P. (1993). Rule-based procedures in short-term electricity load 
forecasting. IMA Journal of Management Mathematics, 5(1): 131–141. 

Hyde, O., & Hodnett, P. (1997). An adaptable automated procedure for short-term 
electricity load forecasting. IEEE Transactions on Power Systems, 12(1): 84–94. 

Kim, K.-H., Youn, H.-S., & Kang, Y.-C. (2000). Short-term load forecasting for special 
days in anomalous load conditions using neural networks and fuzzy inference 
method. IEEE Transactions on Power Systems, 15(2): 559–565. 

Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., & Cencellli, V. O. (1996). A neural 
network based technique for short-term forecasting of anomalous load periods. 
IEEE Transactions on Power Systems, 11(4): 1749–1756. 

Rahman, S., & Bhatnagar, R. (1988). An expert system based algorithm for short term 
load forecast. IEEE Transactions on Power Systems, 3(2): 392–399. 

Soares, L. J., & Medeiros, M. C. (2008). Modeling and forecasting short-term electricity 
load: A comparison of methods with an application to Brazilian data. International 
Journal of Forecasting, 24(4): 630–644. 

Song, K.-B., Baek, Y.-S., Hong, D. H., & Jang, G. (2005). Short-term load forecasting 
for the holidays using fuzzy linear regression method. IEEE Transactions on Power 
Systems, 20(1): 96–101. 

Srinivasan, D., Chang, C., & Liew, A. (1995). Demand forecasting using fuzzy neural 
computation, with special emphasis on weekend and public holiday forecasting. 
IEEE Transactions on Power Systems, 10(4): 1897–1903. 

 

 


