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Abstract 
 In this paper, we undertake an extensive comparative study of some biased, almost 
unbiased and unbiased product estimators on the ground of different performance 
measures through Monte Carlo simulation that has not yet been initiated in the survey 
sampling literature. The simulation experiment is conducted using data on 20 natural 
populations available in the literature, and the performance indicators taken into 
consideration are the absolute relative bias, percentage relative efficiency, coverage rate of 
confidence intervals, standard deviation of the student 𝑡 −statistic, and approach to 
symmetry (normality). This empirical study will not only facilitate to assess the overall 
relative performance of different competing product or product-type estimators but will also 
be beneficial to provide some guidelines towards further research in this direction.     
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1. Introduction 

Let 𝑦𝑖 and 𝑥𝑖 (𝑖 = 1, 2, … . , 𝑁) be the values of the survey variable 𝑦 and an auxiliary 

variable 𝑥 on the 𝑖th unit of a finite population 𝑈 of 𝑁 units. With the aim of estimating 

unknown population mean  𝑌 of 𝑦 at the moment that the population mean 𝑋 of 𝑥 is 

known, assume that a random sample 𝑠 of 𝑛 units is taken from 𝑈 in accord with simple 

random sampling without replacement (SRSWOR). Let �̅� =
1

𝑛
∑ 𝑦𝑖𝑖∈𝑠  and �̅� =

1

𝑛
∑ 𝑥𝑖𝑖∈𝑠  

be the sample means, 𝑠𝑦
2 =

1

𝑛−1
∑ (𝑦𝑖 −  �̅�)2

𝑖∈𝑠  and 𝑠𝑥
2 =

1

𝑛−1
∑ (𝑥𝑖 −  �̅�)2

𝑖∈𝑠  be the sample 

variances, and 𝑠𝑦𝑥 =
1

𝑛−1
∑ (𝑦𝑖 −  �̅�)(𝑥𝑖 −  �̅�)𝑖∈𝑠  be the sample covariance. Ordinarily, 

many survey statisticians do not give product method of estimation as much emphasis 
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 as ratio method of estimation. Because, they are on the opinion that occurrence of 

negatively correlated auxiliary variables is a rare phenomenon. But, in the context of 

sample surveys, it is not very uncommon to observe negatively correlated variables 

[see for example, (Chaubey et al., 1990; R. Sahoo et al., 2022)].  

 The classical product estimator of the population mean 𝑌 is defined by 

   ℓ𝑃 =
�̅��̅�

𝑋
        (1) 

[cf., (Murthy, 1964)] which performs better than the mean per unit estimator �̅� 

when  𝜌𝐶𝑦 𝐶𝑥⁄ < − 1 2⁄ , where 𝐶𝑦 and 𝐶𝑥 are the coefficients of variation of 𝑦 and 𝑥 

respectively, and 𝜌 is the coefficient of correlation between them. Customarily, ℓ𝑃 is 

biased having exact bias expression  

  𝐵(ℓ𝑃) = 𝐸(ℓ𝑃) − 𝑌 = 𝜃
𝑆𝑦𝑥

𝑋
 ,      (2) 

where 𝜃 =
𝑁−𝑛

𝑁𝑛
 and 𝑆𝑦𝑥 =

1

𝑁−1
∑ (𝑦𝑖 −  𝑌)𝑁

𝑖=1 (𝑥𝑖 −   𝑋). But estimating and correcting 

bias by the accustomed method, (Robson, 1957) composed an unbiased estimator 

defined by  

  ℓ𝑅𝑃 = ℓ𝑃(1 − 𝜃𝑐𝑦𝑥)       (3) 

where 𝑐𝑦𝑥 = 𝑠𝑦𝑥 �̅��̅�⁄ . Comparing variance expressions up to terms of order  𝑛−2, (V. 

Srivastava et al., 1981) established that ℓ𝑅𝑃 is better than ℓ𝑃. On the other hand, under 

finite and infinite population’s set-up, (Chaubey et al., 1990) proved that ℓ𝑅𝑃 is more 

efficient than ℓ𝑃 if 𝜌2 > (𝑛 − 2)−1. 

 Following (L. Sahoo, 1983) work, (Singh, 1989) constructed an almost unbiased 

product estimator (unbiased up to terms of O(𝑛−1)) of the form.  

  ℓ𝑆𝑃 = ℓ𝑃 (1 + 𝜃𝑐𝑦𝑥)⁄      (4) 

Note that the estimators ℓ𝑅𝑃 and ℓ𝑆𝑃 are virtually equivalent in the sense that they rely 

on the same statistics and moreover their variances are equal to O(𝑛−2).  

  Under the prediction viewpoint [c.f., (Basu, 1971; Bolfarine & Zacks, 2012), p.12], 

recently (Basu, 1971) and (R. Sahoo et al., 2022) formulated an almost unbiased 

product estimator defined by 

  ℓ𝐴𝑃 =
1

𝑋
[�̅��̅� − 𝜃

𝑁−2

𝑁−1
𝑠𝑦𝑥 −

1

𝑁−1
𝑏𝑦𝑥(�̅� − 𝑋)

2
]   (5) 

where 𝑏𝑦𝑥 = 𝑠𝑦𝑥 𝑠𝑥
2⁄ . The authors undertook a comparative study of ℓ𝑃, ℓ𝑅𝑃 and ℓ𝐴𝑃 in 

the light of mean square errors up to O(𝑛−2). However, this is not sufficient to establish 

relative merit of an estimator for its optimal use in survey operations as a variety of 

other performance criteria and a variety of other estimators are available in the 

literature. In this paper, we concentrate on an empirical comparison of several product 

estimators using various performance criteria. But, before proceeding further, first we 

turn to the construction of an alternative product estimator borrowing the new idea 

introduced in (R. Sahoo et al., 2022). 



320  Sahoo et al. 
 

2. An Alternative Almost Unbiased Product Estimator  

To estimate 𝐵(ℓ𝑃) under prediction methodology, we need a suitable predictor for the 

unknown population covariance 𝑆𝑦𝑥. Hence, let us write   

  (𝑁 − 1)𝑆𝑦𝑥 = (𝑛 − 1)𝑠𝑦𝑥 + (𝑁 − 𝑛 − 1)𝑆𝑦𝑥(𝑟) +(1 − 𝑓)𝑛(�̅� − 𝑌𝑟)(�̅� − 𝑋𝑟)   (6)  

where 𝑟 = 𝑈 − 𝑠 denotes the collection of un-sampled units of  𝑈, 𝑓 =
𝑛

𝑁
 ,  𝑌𝑟 =

1

𝑁−𝑛
∑ 𝑦𝑖𝑖∈𝑟 ,  𝑋𝑟 =

1

𝑁−𝑛
∑ 𝑥𝑖𝑖∈𝑟  and 𝑆𝑦𝑥(𝑟) =

1

𝑁−𝑛−1
∑ (𝑦𝑖 − 𝑌𝑟)𝑖∈𝑟 (𝑥𝑖 − 𝑋𝑟).  

 In equation (6), note that 𝑠𝑦𝑥 and 𝑋𝑟 =
𝑁𝑋−𝑛�̅�

𝑁−𝑛
 are known quantities whereas 𝑌𝑟 and 

𝑆𝑦𝑥(𝑟) are unknown. Hence, prediction of (𝑁 − 1)𝑆𝑦𝑥 needs simultaneous prediction of 

 𝑌𝑟 and 𝑆𝑦𝑥(𝑟) from the sample data. Letting 𝑀𝑟 and 𝐶𝑟 as their respective predictors, a 

predictor of 𝑆𝑦𝑥 can be created from the following equation: 

  (𝑁 − 1)�̂�𝑦𝑥 = (𝑛 − 1)𝑠𝑦𝑥 + (𝑁 − 𝑛 − 1)𝐶𝑟 +(1 − 𝑓)𝑛(�̅� − 𝑀𝑟)(�̅� − 𝑋𝑟).  (7)  

 Inspired by the arguments given in (Basu, 1971) and (Sampford, 1978), and 

encouraged by (R. Sahoo et al., 2022), here we also rely on the tools of the classical 

estimation theory to find out a suitable predictor for 𝑌𝑟. Hence, use of 𝑠𝑦𝑥 and  �̅��̅� 𝑋𝑟⁄  

as predictors of 𝑆𝑦𝑥(𝑟) and 𝑌𝑟 respectively i.e., 𝐶𝑟 = 𝑠𝑦𝑥 and  𝑀𝑟 = �̅��̅� 𝑋𝑟⁄  yields the 

following predictive estimator for 𝑆𝑦𝑥:  

  𝐻𝑦𝑥 =
𝑁−2

𝑁−1
𝑠𝑦𝑥 −

𝑛𝑁

(𝑁−1)
(

�̅�

𝑁𝑋−𝑛�̅�
) (�̅� − 𝑋)

2
    (8) 

This is of course biased for 𝑆𝑦𝑥. However, estimation of  𝐵(ℓ𝑃) by  𝜃
𝐻𝑦𝑥

𝑋
  gives a 

predictive product estimator for 𝑌 defined by 

  ℓ𝑁𝑃 =  ℓ𝑃 −
𝜃

𝑋
[

𝑁−2

𝑁−1
𝑠𝑦𝑥 −

𝑛𝑁

𝑁−1
(

�̅�

𝑁𝑋−𝑛�̅�
) (�̅� − 𝑋)

2
]   (9) 

3. Estimators Considered for the Simulation Study  

We consider some more estimators along with those considered/proposed above for 

our empirical investigation (simulation study). This will make our comparative study 

more productive. But, the task of searching for all product estimators available in the 

survey sampling literature is not attainable. However, we present below a brief review 

of some product estimators as easily accessible comfortably in the literature.  

 (Gupta & Adhvaryu, 1982) constructed an unbiased product estimator after 

correcting bias of the mean of the product estimator �̅� 𝑋⁄ , where  �̅� =
1

𝑛
∑ 𝑦𝑖𝑥𝑖𝑖∈𝑠 . The 

estimator is given by 

ℓ𝐺𝐴 =
1

𝑋
[�̅� −

𝑁−1

𝑁
𝑠𝑦𝑥]     (10) 
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But, this estimator is not considered as it is equivalent to (Robson, 1957) unbiased 

estimator ℓ𝑅𝑃 and therefore both estimators yield same numerical results in respect of 

different performance measures taken into account.  

 (S. Srivastava, 1983) defined a predictive product estimator of the form 

  ℓ𝑆 = �̅�
𝑛�̅�+(𝑁−2𝑛)�̅�

𝑁�̅�−𝑛�̅�
      (11) 

After adjusting  ℓ𝑆 for the bias, (Quenouille, 1956) and (J. Sahoo & Sahoo, 1999) 

formulated an almost unbiased predictive product estimator defined by 

  ℓ𝑆𝑆 = ℓ𝑆 − 𝜃
�̅��̅�

𝑁�̅�−𝑛�̅�
[(𝑁 − 𝑛)𝑐𝑦𝑥 + 𝑛𝑐𝑥

2]    (12) 

where 𝑐𝑥
2 = 𝑠𝑥

2 �̅�2⁄ .  

Following (Quenouille, 1956), (Shukla, 1976), developed an almost unbiased 

product estimator that is based on the random splitting of the sample into two equal 

parts. But, for our purpose we do not prefer this estimator as it needs sample sizes of 

even numbers and moreover, as shown by (V. Srivastava et al., 1981) it is uniformly 

less efficient than ℓ𝑃 and ℓ𝑅𝑃. On the similar grounds we also exclude an additional 

almost unbiased product estimator created in Sahoo & Sahoo (1999).  

 Finally, we have taken seven estimators viz., ℓ𝑃, ℓ𝑅𝑃, ℓ𝑆𝑃, ℓ𝐴𝑃, ℓ𝑁𝑃, ℓ𝑆 and ℓ𝑆𝑆 for 

the purpose of the present simulation study. An interesting common feature of all the 

seven estimators is that their variance/MSE expressions are equal to terms of 

order 𝑛−1 as is given by 

  𝑉(ℓ) = 𝜃(𝑆𝑦
2 + 2𝑅𝑆𝑦𝑥 + 𝑅2𝑆𝑥

2)           (13) 

where ℓ stands for any one of the said estimators, 𝑅 = 𝑌 𝑋⁄ ,  𝑆𝑦
2 =

1

𝑁−1
∑ (𝑦𝑖 −  𝑌)

2𝑁
𝑖=1  

and 𝑆𝑥
2 =

1

𝑁−1
∑ (𝑥𝑖 −  𝑋)

2𝑁
𝑖=1 . 

4. Performance of the Selected Estimators  

After selecting seven competing estimators  ℓ𝑃, ℓ𝑅𝑃, ℓ𝑆𝑃, ℓ𝐴𝑃, ℓ𝑁𝑃, ℓ𝑆 and ℓ𝑆𝑆, the next 

important task is to analyze their relative  performance on various grounds. However, 

we would like to remark here that even if our sampling method is simple i.e., SRSWOR, 

the estimators are not only non-linear functions of some statistics but some of them 

are also very complex. Due to complex structure of the estimators, derivation of exact 

results on their design-based bias, variance/MSE and other performance measures 

under a finite population set up is not straightforward and finally, a theoretical 

comparison of their performances is not practicable. On the other hand, we also see 

that the asymptotic results are not simple enough to rely for drawing valid conclusions 

regarding relative merits of different estimators. Moving from these considerations, an 

effort has been made here to compare the performances of the proposed estimators 

empirically through calculations of values for different performance measures. A Monte 

Carlo Simulation exercise is carried out by drawing a series of 5000 independent samples 

of sizes 3, 5 and 7 from 20 populations given in some standard textbooks.  
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 Qualities of the eight comparable estimators are assessed on the basis of five 

performance measures viz., absolute relative bias, percentage relative efficiency, 

coverage rate of confidence intervals, standard deviation of the student 𝑡 −statistic, 

and approach to symmetry. For an estimator ℓ, these measures are explained as 

follows:  

1. Absolute Relative Bias (ARB): As the bias of an estimator is either negative or 

positive, for comparison purpose we consider its absolute value. This measure 

is given by    

𝐴𝑅𝐵(ℓ) = |
𝐵𝑖𝑎𝑠 (ℓ)

𝑌
| = |

𝐸(ℓ)− 𝑌

 𝑌
|    (14) 

2. Percentage Relative Efficiency (PRE): For simplicity, we compute relative 

efficiency of an estimator with respect to the simple expansion estimator �̅� as 

defined by      

𝑃𝑅𝐸(ℓ) =
100×𝑉(�̅�)

𝑉(ℓ)
      (15) 

where  𝑉(�̅�) = 𝜃𝑆𝑦
2 and 𝑉(ℓ) = 𝐸[ℓ]2 − [𝐸(ℓ)]2. 

3. Coverage Rate (CR) for �̅� Based on 100(1 − 𝛼)% (95% or 99%) Confidence 

Interval: When ℓ is a point estimator for  𝑌, a 100(1 − 𝛼)% confidence interval 

for 𝑌 based on its variance estimator �̂�(ℓ) is given by  

ℓ ± 𝑧1−
𝛼

2

√�̂�(ℓ)      (16) 

where 𝑧1−
𝛼

2
 is exceeded with probability 𝛼 2⁄  by the unit normal variate under the 

assumption that the sampling distribution of ℓ is approximately normal and  

�̂�(ℓ) = 𝜃[𝑠𝑦
2 + 2𝑟𝑠𝑦𝑥 + 𝑟2𝑠𝑥

2]     (17) 

with 𝑟 = �̅� �̅�⁄ . Note that this is the common asymptotic expression for the estimated 

variance of the comparable estimators. This interval will contain the unknown 

mean  𝑌 for an approximate proportion of 100(1 − 𝛼)% of repeated independent 

samples drawn from a given population if it is assumed that ℓ is asymptotically 

normally distributed with mean  𝑌  and variance  𝑉(ℓ). 

4. Standard Deviation of the Student 𝑡 Statistic:  It is of interest to study the shape 

of the sampling distribution of the  𝑡 −statistic by    

𝑡 =
|ℓ−Y̅|

√�̂�(ℓ)
.      (18) 

If it is assumed that �̂�(ℓ) is a good estimate of  𝑉(ℓ), then for small 𝑛, the sampling 

distribution of 𝑡 should conform closely to that of Student 𝑡 variable with 𝑛 − 1 degree 

of freedom. The standard deviation (SD) of 𝑡 defined by 

𝜎𝑡 = +√[𝐸(𝑡 − 𝐸(𝑡))2]    (19) 
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symbolizes to what extent the estimator ℓ maintains its consistency for the sampling 

fluctuations. It is known that the SD for the Student 𝑡  distribution with 𝑛 (> 2) degree 

of freedom is +√𝑛 (𝑛 − 2)⁄ . 

5. Approach to Symmetry (Normality): To quantify asymmetry of the sampling 

distribution of  ℓ, we consider 𝛽1 coefficient (coefficient of skewness) given by   

𝛽1 =
[𝐸(ℓ−𝐸(ℓ))3]

2

[𝐸(ℓ−𝐸(ℓ))2]3      (20) 

whose value is zero for a  symmetrical (normal) distribution. The more close the 

value of 𝛽1 to zero, more is the symmetricity of the distribution of the estimator. 

5. The Simulation Study 

The simulation study reported here uses data of 20 natural populations. Source, 

size (𝑁) and variables 𝑦  and  𝑥 for these populations are presented in table 1. 5,000 

independent samples of sizes 𝑛 = 3, 5 and 7, are drawn without replacement from 

each population. Based on the observed values of (𝑦, 𝑥) of each realized sample, the 

estimates are calculated. Then, 5000 such values of an estimate may be termed as 

the empirical sampling distribution which closely approximates the exact sampling 

distribution that cannot be easily obtainable. 

If  ℓ(𝑗) denotes the value of the estimator ℓ for the 𝑗th sample, then we calculate 
1

5000
∑ ℓ(𝑗)5000

𝑗=1 ,  
1

5000
∑ ℓ(𝑗)25000

𝑗=1  and  
1

5000
∑ (ℓ(𝑗) − 𝑉(ℓ))

25000
𝑗=1  

as estimates of  

𝐸(ℓ), 𝐸(ℓ)2 and  𝑉(ℓ) = 𝐸(ℓ − 𝑉(ℓ))2 

respectively. Then the measures ARB, PRE, 𝜎𝑡 and 𝛽1 are computed in the usual 

manner. For each sample, the confidence interval is calculated and then counting the 

number of intervals that contain the true value of  �̅�, the coverage rates are finally 

calculated and expressed in percentage.  

 The simulated results in favor of the performance measures for all competing 

estimators and all populations are summarized in tables 2 to 16 and discussions on 

the empirical findings via simulation are briefly discussed in sub-sections 5.1 to 5.5. 

The entries for the best performer cases are boldly marked and those for the second 

best performer cases are underlined. But for CRs only the unique best performer cases 

are boldly marked.  
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Table 1: Populations under study 

Pop. No. Source 𝑁 𝑦 𝑥 

1 
Gujarati & Porter (2009, 

p.406) 
35 passenger cars 

(1-35) 
average miles per 

gallon 
engine HP 

2 
Gujarati & Porter (2009, 

p.406) 
35 passenger cars 

(36-70) 
average miles per 

gallon 
engine HP 

3 
Gujarati & Porter (2009, 

p.51) 
27 years 

average hourly 
earnings 

civilian labor force 
participation rate 

4 Maddala (1992, p.194) 34 rural lands (1-34) sale price of land distance from airport 

5 Maddala (1992, p.194) 
33 rural lands (35-

67) 
sale price of land distance from airport 

6 Morrison (1990, p. 470) 
26 lighter and 

heavier under wt. 
young males 

pigment creatinine phosphate (mg/mL) 

7 (Bhuyan, 2008) 
28 married couples 

of middle class 
families 

fertility level (no. of 
ever born children) 

education level of father (in 
completed years) 

8 Bhuyan (2005, p.76) 
28 two times milking 

cows 
daily milk 
production 

wt. of cow after lactation 
period 

9 Bhuyan (2005, p.76) 
28 three times 
milking cows 

daily milk 
production 

wt. of cow after lactation 
period 

10 
Johnson & Wichern, (2007, 

p.215) 
20 healthy females sweat rate potassium content 

11 
Rawlings et al (1998, 

p.396) 
20 plots (depth 1) sand percentage silt percentage 

12 
Rawlings et al (1998, 

p.396) 
20 plots (depth 2) clay percentage sand percentage 

13 
Montgomery et al., (2012, 

p.556) 
32  automobiles miles/gallon horsepower 

14 
Montgomery et al., (2012, 

p.15) 
20 obs. shear  strength age  of  propellant 

15 
Montgomery et al., (2012, 

p.291) 
16 obs. 

conversion of 𝑛 − 
heptane to 

acetylene (%) 
contact  time (sec) 

16 
Montgomery et al., (2012, 

p.483) 
20 time periods 

selling  price  of 
toothpaste per  

pound 
market share of toothpaste 

17 
Montgomery et al., (2012, 

p.572) 
32 young red wines 

quality rating (20 
maximum) 

total SO2 (ppm) 

18 
Montgomery et al., (2012, 

p.558) 
27 Belle Ayr 

liquefaction runs 
oil yield coal total 

19 Rencher (2002, p.269) 23 obs. (1-23) evaporation 
minimum daily relative 

humidity 

20 Rencher (2002, p.269) 23 obs.(24-46) evaporation 
minimum daily relative 

humidity 

  

5.1  Results on the ARB  

Numerical values on the ARB of the two biased estimators ℓ𝑃 and ℓ𝑆, and four almost 
unbiased estimators ℓ𝑆𝑃, ℓ𝐴𝑃, ℓ𝑁𝑃 and ℓ𝑆𝑆 are shown in tables 2, 3 and 4. As is 
ordinarily expected, the ARB of an estimator more or less diminishes with the 
enlargement of sample size, and the ARB values of the biased estimators, except 
some few cases, greater than those values of the almost unbiased estimators. The 
predictive product estimator ℓ𝑆 appears to be slightly less biased than the classical 
product estimator ℓ𝑃 because of its better performance in 11, 13 and 14 cases for 𝑛 =
3, 5 and 7 respectively. This also indicates that the bias of ℓ𝑆 decreases more rapidly 

than that of ℓ𝑃 with the increase in sample size. 
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Table 2: ARB of the estimators for 𝑛 = 3 

Pop. No. ℓ𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.0024 0.0019 0.0003 0.0006 0.0014 0.0000 
2 0.0160 0.0028 0.0007 0.0012 0.0108 0.0008 
3 0.0047 0.0013 0.0004 0.0006 0.0043 0.0009 
4 0.0472 0.0174 0.0098 0.0034 0.0318 0.0145 
5 0.0435 0.0068 0.0007 0.0013 0.0352 0.0010 
6 2.2228 0.9151 0.5643 0.4012 3.2412 0.3268 
7 0.3412 0.2322 0.0202 0.0195 0.3636 0.0235 
8 0.1610 0.1053 0.0005 0.0040 0.1548 0.0089 
9 0.1582 0.1022 0.0231 0.0040 0.1521 0.0088 

10 0.8741 0.2946 0.0714 0.5770 0.6781 0.3678 
11 0.9123 0.0038 0.0069 0.2544 0.8633 0.6160 
12 0.8622 0.0078 0.0065 0.0072 0.6269 0.5977 
13 0.2250 0.1215 0.0034 0.0046 0.2164 0.0080 
14 0.1004 0.0996 0.0001 0.0329 0.4276 0.0668 
15 3.1634 1.9673 1.6669 1.4313 14.3109 1.5257 
16 1.1903 0.6618 0.0383 0.5695 2.8898 0.1609 
17 0.2125 0.0968 0.0036 0.0032 0.2007 0.0039 
18 0.2444 0.0660 0.0045 0.0016 0.2842 0.0034 
19 0.0119 0.0039 0.0004 0.0019 0.0040 0.0025 
20 0.0149 0.0032 0.0015 0.0013 0.0047 0.0018 

 

Table 3: ARB of the estimators for 𝑛 = 5 

Pop. No. ℓ𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.0014 0.0004 0.0000 0.0003 0.0008 0.0001 
2 0.0090 0.0004 0.0000 0.0007 0.0036 0.0005 
3 0.0026 0.0007 0.0002 0.0000 0.0022 0.0001 
4 0.0265 0.0030 0.0002 0.0023 0.0186 0.0107 
5 0.0244 0.0013 0.0000 0.0007 0.0160 0.0003 
6 1.2177 0.4369 0.1894 0.1435 1.7817 0.2887 
7 0.1884 0.0292 0.0071 0.0098 0.2048 0.0067 
8 0.0889 0.0186 0.0004 0.0026 0.0851 0.0045 
9 0.0873 0.0181 0.0003 0.0026 0.0836 0.0044 

10 0.4628 0.1194 0.0351 0.0438 0.3861 0.2636 
11 0.8065 0.0005 0.0077 0.1229 0.7825 0.4325 
12 0.0329 0.0047 0.0017 0.1043 0.6385 0.4272 
13 0.1257 0.0253 0.0010 0.0030 0.1193 0.0043 
14 0.0532 0.0077 0.0002 0.0201 0.0920 0.0904 
15 4.6060 0.6133 0.0996 4.0103 5.4915 0.9876 
16 0.6302 0.1985 0.0316 0.1964 1.6638 0.2042 
17 0.1187 0.0209 0.0026 0.0020 0.1079 0.0014 
18 0.1344 0.0228 0.0018 0.0110 0.1690 0.0020 
19 0.0065 0.0004 0.0002 0.0010 0.0016 0.0016 
20 0.0080 0.0002 0.0001 0.0014 0.0026 0.0030 

 

Among the almost unbiased estimators, ℓ𝑆𝑃 turns out as the worst performer 

whereas ℓ𝐴𝑃 is superior to others as it is ranked either in the first or second or third 

place for all populations. It seems to be the least biased as its ARB is the minimum in 

11, 15 and 14 populations for 𝑛 = 3, 5 and 7 respectively. This shows that the 

performance of ℓ𝐴𝑃 improves gradually as the sample size gets larger. On the 

consideration of their positions in different populations and for different sample sizes, 

ℓ𝑁𝑃 and ℓ𝑆𝑆 can be regarded as the second least biased and third least biased 

estimators respectively.  
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Table 4: ARB of the estimators for 𝑛 = 7 

Pop. No. ℓ𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.0008 0.0005 0.0000 0.0002 0.0004 0.0003 
2 0.0051 0.0004 0.0000 0.0002 0.0005 0.0003 
3 0.0014 0.0009 0.0006 0.0000 0.0011 0.0001 
4 0.0149 0.0006 0.0002 0.0014 0.0043 0.0071 
5 0.0136 0.0003 0.0000 0.0004 0.0053 0.0001 
6 0.6523 0.1875 0.0080 0.0538 0.5603 0.1461 
7 0.1024 0.0096 0.0057 0.0050 0.1155 0.0043 
8 0.0483 0.0042 0.0004 0.0016 0.0458 0.0026 
9 0.0475 0.0041 0.0003 0.0015 0.0450 0.0025 

10 0.2314 0.0394 0.0255 0.2202 0.8669 0.1880 
11 0.5133 0.0001 0.0083 0.0524 0.4648 0.1687 
12 0.0165 0.0104 0.0032 0.0012 0.5803 0.0030 
13 0.0698 0.0065 0.0002 0.0018 0.0647 0.0025 
14 0.0266 0.0013 0.0003 0.0102 0.1197 0.0454 
15 1.7300 0.2170 0.0775 0.1785 1.2776 0.1698 
16 0.3151 0.0697 0.0249 0.0665 0.3080 0.2693 
17 0.0659 0.0055 0.0015 0.0011 0.0558 0.0009 
18 0.0726 0.0069 0.0008 0.0057 0.1044 0.0010 
19 0.0064 0.0014 0.0000 0.0005 0.0015 0.0008 
20 0.0042 0.0020 0.0001 0.0000 0.0025 0.0016 

 

Table 5: PRE of the estimators for 𝑛 = 3 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 102.22 82.999 83.708 84.036 103.25 83.672 83.002 
2 90.013 98.513 97.148 121.97 98.768 79.286 98.408 
3 25.828 26.762 26.161 26.676 26.345 25.806 26.167 
4 37.976 41.165 38.624 42.294 42.326 40.269 37.277 
5 84.995 70.981 69.583 71.311 71.342 84.586 71.840 
6 86.726 613.43 229.17 713.00 721.71 52.195 269.03 
7 423.11 631.34 599.45 842.89 648.71 408.76 652.13 
8 639.63 933.69 568.27 640.78 937.35 646.35 652.50 
9 891.11 656.72 582.44 957.94 693.79 773.54 670.29 

10 7.6668 22.423 15.433 21.068 4.8039 4.4501 6.0135 
11 9.6833 9.4415 9.5883 9.6904 9.6902 9.1431 9.2282 
12 5.4632 5.2687 5.3919 5.3993 5.3967 5.1024 5.1290 
13 1136.8 777.86 696.15 1231.8 1185.3 1169.1 789.74 
14 25.297 15.983 14.522 26.068 14.334 12.852 9.9440 
15 22.788 233.87 64.956 245.83 95.950 90.040 23.689 
16 33.408 141.23 77.656 139.38 73.183 10.391 197.82 
17 731.55 1077.6 666.14 730.00 836.57 605.50 736.35 
18 4.0554 4.0856 4.0789 4.0866 4.0858 4.0504 4.0818 
19 28.186 28.717 28.677 28.701 28.439 28.517 28.415 
20 27.387 29.132 28.944 30.187 28.969 28.050 28.282 
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Table 6: PRE of the estimators for 𝑛 = 5 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 78.367 66.838 67.059 67.258 79.154 66.869 66.762 
2 83.634 83.763 83.607 97.403 96.061 84.807 83.777 
3 21.462 21.676 21.677 21.744 21.665 21.444 21.680 
4 33.802 37.809 32.803 43.838 33.259 34.990 31.308 
5 80.144 80.399 69.724 70.641 80.260 70.629 71.163 
6 95.550 492.19 232.81 501.14 391.93 60.128 380.34 
7 374.65 537.66 500.79 535.32 567.03 362.80 530.46 
8 512.32 692.10 483.34 682.19 516.70 513.88 520.13 
9 526.30 525.38 495.20 715.92 706.98 529.09 533.60 

10 8.9246 7.0096 16.318 19.882 21.053 13.583 8.4638 
11 10.669 10.677 10.676 10.682 10.491 10.152 10.280 
12 8.3375 8.5010 8.2992 8.6032 8.6268 8.0809 8.1215 
13 561.83 628.58 592.13 627.86 632.37 450.91 684.90 
14 11.161 12.106 11.584 12.168 16.934 8.8930 8.4244 
15 27.235 186.46 71.325 182.01 22.273 74.564 34.921 
16 35.629 115.82 75.511 214.90 198.62 12.002 74.948 
17 800.38 598.86 570.28 597.53 602.04 582.26 600.15 
18 5.0506 5.0722 5.0684 5.0725 5.0697 5.0461 5.0694 
19 24.833 25.190 23.179 24.193 23.032 22.771 24.146 
20 88.748 90.162 89.890 90.352 90.141 80.087 89.130 

 

Table 7: PRE of the estimators for 𝑛 = 7 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 200.30 195.29 195.60 203.63 204.46 200.71 200.42 
2 138.52 130.88 130.99 141.45 138.35 131.46 131.36 
3 26.939 28.248 28.217 28.267 28.160 26.639 28.244 
4 90.516 91.254 90.275 91.234 90.980 88.129 90.609 
5 165.79 155.02 154.82 154.91 178.09 156.72 173.23 
6 343.08 356.84 350.80 390.70 375.29 355.50 334.90 
7 68.033 83.229 73.444 75.257 75.758 74.321 73.547 
8 21.654 23.673 18.673 28.673 25.672 20.648 21.675 
9 1.3041 1.3385 1.3380 1.3383 1.3357 1.2918 1.3429 

10 4631.6 5789.9 1856.5 5791.9 4721.3 1203.5 1214.6 
11 1437.1 1513.5 1511.8 2030.4 1893.5 677.02 702.77 
12 587.96 975.96 609.28 903.13 851.48 833.31 609.66 
13 14.166 15.413 15.469 15.442 15.782 14.195 15.430 
14 142.50 189.62 228.22 248.93 156.41 149.48 143.77 
15 54.751 29.682 44.761 32.909 66.351 57.910 51.851 
16 19.279 24.506 23.504 25.993 23.684 12.369 12.213 
17 4.0742 3.9214 3.9203 3.9249 3.9174 3.9080 3.9246 
18 10.571 10.850 10.764 10.994 10.887 10.554 10.848 
19 155.34 164.20 155.01 164.06 164.73 160.72 153.52 
20 440.71 462.61 460.56 460.82 459.81 435.98 460.98 

 

5.2  Results on the PRE  

Results on the PRE of different estimators presented in tables 5, 6 and 7 show that 

their efficiency gain compared to the direct estimator �̅� although noticeably high in most 

cases, in some cases it is just marginal. In some populations, the comparable 

estimators also perform very similarly in the sense that there is not any appreciable 

difference between their PRE values. On the consideration of the overall performance, 

the four estimators ℓ𝑃, ℓ𝑆𝑃, ℓ𝑆 and ℓ𝑆𝑆 are inferior to the other three estimators ℓ𝑅𝑃, ℓ𝐴𝑃 



328  Sahoo et al. 
 

and ℓ𝑁𝑃, and both ℓ𝑆𝑃 and ℓ𝑆 remain as the worst performer whereas the performance 

of ℓ𝑃 or ℓ𝑆𝑆 appears highly unsatisfactory.  

 From the results on the PRE values of the three competing estimators ℓ𝑅𝑃, ℓ𝐴𝑃 and 

ℓ𝑁𝑃, we see that ℓ𝐴𝑃 and ℓ𝑅𝑃 are decidedly the most efficient in 9 and 4 populations for 

all values of 𝑛 whereas ℓ𝑁𝑃 is the same in 4 populations for 𝑛 = 3, and in 5 populations 

for  𝑛 = 5 and 7. On the other hand, ℓ𝐴𝑃 is the second most efficient in 6 populations 

for 𝑛 = 3 and in 5 populations for  𝑛 = 5 and 7, and ℓ𝑁𝑃 is the same in 5 populations 

for all values of 𝑛. In view of these findings and considering their performances, we 

directly rank ℓ𝐴𝑃, ℓ𝑁𝑃 and ℓ𝑅𝑃 respectively as the best, second best and third best 

performers. 

Table 8: Coverage rate of the estimators for 𝑛 = 3 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 81.95 80.87 80.77 80.90 80.87 81.92 80.85 
2 74.03 73.84 73.72 73.79 73.81 74.65 73.65 
3 59.72 59.72 59.72 59.76 59.72 59.72 59.72 
4 76.68 75.86 75.78 75.70 75.91 76.65 75.80 
5 81.76 81.89 81.67 81.85 81.96 81.50 81.89 
6 11.80 11.73 11.30 11.73 11.73 11.19 11.73 
7 18.52 18.52 18.52 18.52 18.52 18.52 18.52 
8 23.44 23.41 23.41 23.41 23.41 23.44 23.41 
9 24.26 24.20 24.20 24.20 24.20 24.26 24.20 

10 13.77 15.00 13.77 18.94 14.12 14.64 15.17 
11 35.78 35.43 35.43 30.43 37.71 44.64 44.73 
12 30.35 30.43 30.43 30.26 31.31 35.08 34.82 
13 17.72 17.41 17.29 17.39 17.41 17.72 17.41 
14 78.42 78.85 78.85 79.12 79.47 80.35 80.17 
15 16.07 18.75 18.75 18.75 18.75 17.71 18.78 
16 15.70 28.42 28.33 28.33 28.33 13.59 28.33 
17 18.56 18.58 18.44 18.54 18.54 18.52 18.54 
18 52.30 51.65 51.79 51.86 51.76 52.10 51.31 
19 83.96 84.64 84.58 84.58 84.52 83.73 84.64 
20 90.00 90.40 90.40 90.34 90.34 90.06 90.28 

 

5.3  Results on the Coverage Rate  

The coverage rates of nominal 95% confidence intervals for 𝑌 dependent on different 

estimators are presented in tables 8, 9 and 10. Note that the results for 99% are not 

displayed since they confirm more or less the tendencies found in the case of 95%. On 

the ground of the achieved CRs we note that the CRs of all estimators are 

unpredictable and usually bear no resemblance to the nominal rates aimed at. In many 

cases, the CRs of the confidence intervals are very poor. This under coverage is 

probably because of the choice of a seriously biased common approximate variance 

estimator for the comparable estimators. Surprisingly, in most of the populations we 

also see that there is no indication of increase in the quality of all estimators when 

sample size is enlarged rather their quality deteriorates.  
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Table 9: Coverage rate of the estimators for 𝑛 = 5 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 90.37 89.29 89.28 89.29 89.25 89.82 88.96 
2 86.40 86.51 86.49 86.70 86.42 86.60 85.99 
3 49.20 49.30 49.30 49.30 49.30 49.20 49.30 
4 76.47 74.55 74.29 74.57 74.40 75.86 74.01 
5 88.76 88.74 88.71 88.74 88.96 88.64 88.40 
6 23.07 23.07 23.07 23.07 23.07 23.09 23.07 
7 21.42 21.42 21.42 21.42 21.42 21.42 21.42 
8 38.88 38.88 38.88 38.88 38.88 38.88 38.88 
9 38.88 38.88 38.88 38.88 38.88 38.88 38.88 

10 21.50 30.00 30.00 30.00 11.97 12.00 23.24 
11 14.93 15.92 15.92 15.91 14.68 15.55 14.74 
12 17.15 17.74 17.65 17.80 17.08 17.21 17.06 
13 18.75 18.75 18.75 18.75 18.75 18.75 18.75 
14 79.47 73.16 72.52 73.31 72.17 71.41 73.77 
15 37.45 37.50 37.50 37.50 37.50 37.50 37.50 
16 52.10 52.10 52.10 52.10 52.10 52.14 52.10 
17 18.72 18.75 18.70 18.71 18.72 18.74 18.68 
18 48.12 47.78 47.83 47.81 47.83 48.21 46.65 
19 90.29 90.24 90.23 90.24 90.20 89.91 90.28 
20 91.59 90.74 90.72 90.79 90.62 90.45 90.72 

 

Table 10: Coverage rate of the estimators for 𝑛 = 7 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 91.20 90.28 90.28 90.28 90.25 90.55 89.89 
2 90.64 90.14 90.13 90.12 90.08 89.91 89.61 
3 52.80 52.86 52.86 52.86 52.86 52.81 52.86 
4 81.70 81.33 81.31 81.32 81.36 81.87 81.61 
5 90.55 90.20 90.19 90.21 90.18 90.22 89.90 
6 30.76 30.76 30.76 30.76 30.76 16.40 30.76 
7 34.04 34.05 34.05 34.05 34.05 34.06 34.04 
8 49.73 49.73 49.73 49.73 49.73 49.73 49.73 
9 49.73 49.73 49.73 49.73 49.73 49.73 49.73 

10 40.00 40.00 40.00 40.00 40.00 40.26 40.00 
11 39.99 39.97 39.97 39.97 39.53 25.27 38.62 
12 40.00 39.99 39.99 39.99 39.45 25.32 35.07 
13 31.89 31.87 31.87 31.87 31.87 31.91 31.87 
14 67.36 66.51 66.47 66.53 66.96 72.73 74.34 
15 50.00 50.00 50.00 50.00 51.60 51.03 50.20 
16 56.71 59.07 59.11 65.26 62.28 54.56 65.20 
17 36.50 36.51 36.51 36.51 36.51 36.51 36.51 
18 46.53 45.95 45.97 45.97 46.01 46.78 44.89 
19 92.49 92.55 92.55 92.56 92.54 92.43 92.73 
20 93.80 93.72 93.71 93.78 93.73 93.81 94.15 

 

 From the displayed results on the achieved CR one major conclusion available to 

us is that all estimators perform about equally well. For this reason, it is not straight 

forward to decide which estimator could be given preference over other under such a 

performance measure. Although, the classical product estimator ℓ𝑃 appears superior 

to others in about four to five populations, its improvement is only marginal and not 

enough to take a concrete decision in favor of the estimator.   
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Table 11: SD of the Student 𝑡 statistic of the estimators for 𝑛 = 3 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.9599 0.9918 0.9923 0.9926 0.9937 0.9769 1.0033 
2 1.0334 1.0327 1.0331 1.0350 1.0324 1.0311 1.0300 
3 2.1778 2.1859 2.1860 2.1837 2.1775 2.1855 2.1848 
4 1.2510 1.2858 1.2926 1.2895 1.2795 1.2673 1.3083 
5 0.9070 0.8831 0.8833 0.8837 0.8860 0.9198 0.9010 
6 75.749 75.931 75.855 75.234 75.886 75.524 75.863 
7 46.743 46.707 46.698 46.518 46.506 46.730 46.714 
8 25.908 25.856 25.846 25.856 25.857 25.900 25.854 
9 27.693 27.639 27.629 27.639 27.640 27.683 27.636 

10 2.8373 3.1162 3.0404 3.1064 2.6623 2.7459 2.3312 
11 2.5531 2.5488 2.5480 2.2219 2.4145 2.3146 2.2531 
12 1.5928 1.5500 1.5484 1.4492 1.4388 1.8073 1.4503 
13 32.161 32.089 32.088 32.081 32.088 32.141 32.178 
14 0.9394 1.0958 1.1212 1.0841 1.1687 1.4799 1.5170 
15 11.656 12.071 11.909 9.9084 10.020 13.983 7.7701 
16 15.108 15.304 15.242 14.330 15.167 15.275 14.893 
17 74.341 74.313 74.309 74.312 74.314 74.336 74.632 
18 2.8167 2.8142 2.8085 2.8050 2.8070 2.7629 2.7618 
19 0.8440 0.8537 0.8425 0.8422 0.8460 0.8425 0.8453 
20 0.6904 0.7120 0.7129   0.7254 0.7165 0.7220 0.7119 

 

Table 12: SD of the Student 𝑡 statistic of the estimators for 𝑛 = 5 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.8137 0.8369 0.8372 0.8376 0.8387 0.8319 0.8499 
2 0.9259 0.9282 0.9285 0.9317 0.9282 0.9268 0.9263 
3 2.0245 2.0355 2.0356 2.0336 2.0244  2.0351 2.0341 
4 1.1453 1.1620 1.1642 1.1609 1.1630 1.1506 1.1684 
5 0.8158 0.8187 0.8033 0.8288 0.8332 0.8037 0.8202 
6 74.407 74.602 74.530 73.954 74.561 74.155 74.521 
7 45.446 45.431 45.424 45.321 45.429 45.431 45.438 
8 25.593 25.548 25.549 25.548 25.541 25.584 25.546 
9 27.843 27.797 27.791 27.797 27.798 27.833 27.793 

10 2.9135 3.1830 3.1207 1.9749 2.7865 3.2532 2.3729 
11 2.3210 2.3209 2.3204 2.0696 2.1764 1.7536 1.7108 
12 1.5912 1.5445 1.5429 1.2905 1.3935 1.4733 1.0247 
13 32.065 32.006 32.004 32.000 32.005 32.046 32.040 
14 0.7484 0.8186 0.8268 0.8107 0.8594 1.1846 1.1080 
15 11.573 11.958 11.820 9.8148 10.379 10.239 6.4186 
16 15.470 15.499 15.449 14.324 15.374 14.399 14.953 
17 70.142 70.118 70.115 70.117 70.118 70.134 70.113 
18 2.5619 2.5722 2.5673 2.5004 2.5634 2.5665 2.5217 
19 0.7863 0.7771 0.7770  0.7856 0.7780 0.7767 0.7780 
20 0.6557 0.6693 0.6697 0.6802 0.6719 0.6686 0.6758 

 

5.4  Results on the SD of the Student 𝒕 Statistic (𝝈𝒕)  

Numerical values of the SD of the Student−𝑡 statistic calculated for different estimators 

i.e., their 𝜎𝑡 −values are compiled in tables 11, 12 and 13. On the ground of this 

criterion, the general behavior of the estimators seems to be inconsistent and in most 

of the cases the calculated 𝜎𝑡 −values of the sampling distributions of the estimators 

have very large deviations from their respective theoretical values. Searching for an 
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estimator better than others seems to be difficult owing to very erratic results in favor 

of the estimators except ℓ𝐴𝑃 and ℓ𝑆𝑆 which appear to be good competitors. 

 ℓ𝑆𝑆 turns out as the best performer in 6 populations for 𝑛 = 3 and in 5 populations 

for 𝑛 = 5 and 7 whereas ℓ𝐴𝑃 is the best performer in 6, 9 and 12 populations for 𝑛 =

3, 5 and 7 respectively. ℓ𝐴𝑃 also remains as the second best performer in most of the 

cases. These findings clearly confirms that although the performance of ℓ𝐴𝑃 is not so 

significant for 𝑛 = 3, its overall performance improves when 𝑛 increases and calculated 

𝜎𝑡 −value tends rapidly towards the theoretical value. On the average, the estimators 

ℓ𝐴𝑃 and ℓ𝑆𝑆 look to be better than others. However, ℓ𝐴𝑃 may be ranked in the first 

position whereas ℓ𝑆𝑆 in the second in respect of the consistency under sampling 

fluctuations. Taking into account of the performance, we also select ℓ𝑁𝑃 as the third 

consistent estimator. 

Table 13: SD of the Student 𝑡 statistic of the estimators for 𝑛 = 7 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.3202 0.3304 0.3302 0.3316 0.3302 0.3201 0.3306 
2 0.4322 0.4417 0.4417 0.4438 0.4426 0.4251 0.4429 
3 1.0049 1.0439 1.0435 1.0443 1.0444 0.9940 1.0448 
4 0.8349 0.8425 0.8379 0.8447 0.8435 0.8284 0.8432 
5 0.5929 0.5981 0.5981 0.6037 0.6006 0.5884 0.6014 
6 4.0662 4.0673 4.0672 4.0648 4.0690 4.0831 4.0841 
7 11.111 11.101 11.101 10.833 11.102 11.121 11.101 
8 6.0158 6.0402 6.0397 6.0399 6.0389 6.0427 6.0106 
9 5.2096 5.2099 5.2094 5.1899 5.1869 5.2088 5.2118 

10 0.6635 0.6642 0.6643 0.7124 0.6644 0.6633 0.6639 
11 0.6292 0.6293 0.6294 0.6302 0.6311 0.6160 0.6290 
12 0.2729 0.2860 0.2842 0.2998 0.2860 0.2734 0.2862 
13 10.236 10.236 10.236 10.234 10.235 10.236 10.230 
14 0.4286 0.4244 0.4246 0.4332 0.4182 0.3710 0.3599 
15 1.8954 1.8951 1.8951 1.7619 1.8877 1.8948 1.8148 
16 3.3469 3.3610 3.3608 3.2510 3.3508 3.4221 3.2650 
17 14.246 14.245 14.245 14.223 14.244 14.243 14.217 
18 1.9325 1.9305 1.9231 1.8814 1.8210 1.9305 1.8875 
19 0.5713 0.5840 0.5842 0.5910 0.5842 0.5836 0.5898 
20 0.4310 0.4319 0.4319 0.4320 0.4321 0.4360 0.4362 

 

5.5  Results on the Coefficient of Skewness (𝜷𝟏)  

An examination of the computed values of the coefficient of skewness i.e., 𝛽1 

coefficient given in tables 14, 15 and 16 reveals that the sampling distribution of the 

competing estimators very much deviate from normality. Of course, for 𝑛 = 7 in most 

of the populations, the distributions of the estimators are not far away from the 

normality. Inconsistent behavior of the estimators for different considered values of 𝑛 

(except ℓ𝑃, ℓ𝐴𝑃 and ℓ𝑆) in the approach to symmetry cannot give any clear-cut idea on 

their overall relative performance.  

 For 𝑛 = 3, although the distributions of ℓ𝑃, ℓ𝐴𝑃 and ℓ𝑆 appear to be skewed, for 

increased sample size the skewness of the distributions of ℓ𝑃 slowly approaches to 

zero whereas ℓ𝐴𝑃 and ℓ𝑆 do it faster. After analyzing magnitudes of the deviations of 
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the computed 𝛽1 −values from zero for all populations and for all sample sizes, we 

straightforwardly rank the classical product estimator ℓ𝑃 as the best estimator. On the 

same ground, we also rank ℓ𝐴𝑃 and ℓ𝑆 respectively as the second best and third best 

estimators.  

Table 14: Coefficient of skewness of the estimators for 𝑛 = 3 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.4064 0.4440 0.4324 0.4479 0.4387 0.3800 0.4512 
2 0.2657 0.2815 0.2943 0.2744 0.2876 0.3056 0.3004 
3 2.0996 2.0388 2.0377 2.0413 2.0407 2.0967 2.0407 
4 2.2395 2.9453 3.0495 2.9197 2.9977 2.6952 3.1980 
5 0.2222 0.3810 0.3984 0.3792 0.3847 0.2722 0.4058 
6 2.4569 2.5497 2.4713 2.4530 2.5502 2.4810 3.0151 
7 3.5455 3.4859 3.3747 3.1455 3.4844 3.5052 3.6202 
8 1.4498 1.6571 1.6864 1.6533 1.6516 1.4623 1.6431 
9 1.5384 1.7485 1.7784 1.7440 1.7430 1.5510 1.7347 

10 1.4002 1.5577 1.4655 1.4403 1.4804 1.4115 2.2938 
11 1.5955 1.7009 1.6982 1.6971 1.6745 1.5855 1.7741 
12 1.3968 1.4196 1.4220 1.4211 1.4226 1.4433 1.4932 
13 4.0108 4.0419 4.0537 4.0047 4.0344 3.9693 4.0240 
14 1.0403 1.1724 1.1813 1.1811 1.2591 1.7055 1.7831 
15 0.6557 0.6655 0.6571 0.5257 0.7762 0.8010 0.8165 
16 1.5204 2.3613 1.7590 2.2849 2.0596 1.5067 6.2591 
17 4.7942 4.9252 4.9751 4.7893 4.9203 4.8692 4.9252 
18 3.4946 4.5138 4.1869 4.3798 4.5848 3.9815 5.5155 
19 0.2871 0.3798 0.3819 0.3607 0.3883 0.3805 0.4083 
20 0.3834 0.5331 0.5383 0.5340 0.5490 0.5212 0.5771 

 

Table 15: Coefficient of skewness of the estimators for 𝑛 = 5 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.2974 0.3191 0.3147 0.3212 0.3158  0.2772 0.3231 
2 0.1981 0.2063 0.2112 0.2019 0.2110 0.2362 0.2286 
3 1.4118 1.3768 1.3763 1.3789 1.3779 1.4100 1.3780 
4 1.6917 2.0876 2.1286 2.0694 2.1187 2.0193 2.2406 
5 0.1873 0.2829 0.2899 0.2824 0.2860 0.2321 0.3091 
6 1.7049 1.7020 1.6597 1.6461 1.6633 1.6716 1.9700 
7 2.2365 2.3647 2.3141 2.1791 2.3647 2.2254 2.4513 
8 1.1231 1.1256 1.1348 1.0132 1.1225 1.0209 1.1172 
9 1.0760 1.1894 1.1991 1.0835 1.1863 1.1864 1.1812 

10 0.8120 0.8939 0.8524 0.8313 0.8637 0.8233 1.4767 
11 0.9365 0.9873 0.9864 0.9303 0.9761 0.9892 1.0438 
12 0.8031 0.8134 0.8142 0.8144 0.8170 0.8489 0.8946 
13 2.8397 2.8550 2.8592 2.8348 2.8511 2.8136 2.8441 
14 0.6313 0.6860 0.6878 0.6923 0.7408 1.1594 1.2655 
15 0.2675 0.2721 0.2684 0.2508 0.3697 0.4136 0.4185 
16 0.9144 1.3631 1.0756 1.3165 1.2396 0.9040 3.5249 
17 3.3256 3.3883 3.4059 3.3557 3.3856 3.3209 3.3827 
18 2.9613 3.0328 2.8796 2.4596 3.0795 2.8704 3.7525 
19 0.2173 0.2701 0.2709 0.2701 0.2748 0.2708 0.2882 
20 0.2916 0.3738 0.3757 0.3751 0.3822 0.3738 0.3978 
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Table 16: Coefficient of skewness of the estimators for 𝑛 = 7 

Pop. No. ℓ𝑃 ℓ𝑅𝑃 ℓ𝑆𝑃 ℓ𝐴𝑃 ℓ𝑁𝑃 ℓ𝑆 ℓ𝑆𝑆 

1 0.4282 0.5092 0.5072 0.4984 0.5138 0.4847 0.5631 
2 1.1455 1.2786 1.2792 1.2544 1.2868 1.2375 1.3945 
3 1.0709 1.0690 1.0691 1.0680 1.0690 1.0699 1.0692 
4 0.3412 0.3645 0.3642 0.3669 0.3607 0.3235 0.3340 
5 0.2081 0.3002 0.3022 0.2910 0.3061 0.2561 0.3292 
6 0.0040 0.0047 0.0040 0.0028 0.0062 0.0497 0.0501 
7 0.2079 0.2129 0.2121 0.2121 0.2236 0.2904 0.3003 
8 1.3399 1.3429 1.3428 1.3409 1.3425 1.3384 1.3430 
9 1.3396 1.3425 1.3424 1.3382 1.3422 1.3406 1.3426 

10 0.0121 0.0153 0.0152 0.0116 0.0123 0.0122 0.0666 
11 0.0001 0.0248 0.0248 0.0002 0.0176 0.0788 0.0247 
12 0.0072 0.0078 0.0078 0.0256 0.0109 0.0060 0.0076 
13 1.7195 1.7826 1.7775 1.7854 1.7814 1.7281 1.7887 
14 0.0462 0.0553 0.0551 0.0455 0.0623 0.0831 0.1212 
15 0.0784 0.0874 0.0872 1.9651 0.0001 0.0254 0.0257 
16 0.5329 0.5509 0.5513 0.4145 0.5251 0.4113 0.5742 
17 2.4195 2.5874 2.5900 2.5880 2.5751 2.3687 2.4875 
18 1.7453 2.1886 2.0592 1.8941 2.1907 2.1583 2.4422 
19 0.0052 0.0059 0.0059 0.0007 0.0053 0.0071 0.0097 
20 0.0273 0.0282 0.0281 0.0255 0.0303 0.0482 0.0509 

 

6. Conclusions 

From the simulation study we see that the overall performance of the almost unbiased 

estimator ℓ𝐴𝑃 compared to others on the basis of the statistical measures viz., 

biasedness, efficiency and SD of the Student 𝑡 Statistic is highly satisfactory. From the 

asymmetry point of view this estimator cannot compete with the classical product 

estimator ℓ𝑃 and ranked as the second best estimator. But when 𝑛 increases, ℓ𝐴𝑃 

approaches more rapidly towards normality than ℓ𝑃. In view of this, we cannot rightly 

say that ℓ𝐴𝑃 is worse than ℓ𝑃 since approach to symmetry is a large sample property 

of an estimator. Of course on the ground of the CR, performance of ℓ𝐴𝑃 is not so 

impressive but not at all discouraging as an estimator performs more or less similarly 

with its competitors. Hence, considering these findings we conclude that ℓ𝐴𝑃 is the best 

performer amongst all.          

  The results of this numerical study also leads to the following tentative conclusions: 

(i) The proposed new almost unbiased estimator ℓ𝑁𝑃 may be preferred as the 

second best choice in respect of ARB and PRE, and third best choice in respect 

of SD of the Student 𝑡 only. 

(ii) ℓ𝑃 is the most preferable only on the consideration of skewness 

(iii) Sahoo & Sahoo’s (1999) almost unbiased estimator ℓ𝑆𝑆 is the third and second 

best choices only in terms of ARB and SD of the Student 𝑡 respectively. 

(iv) Robson’s (1957) unbiased estimator ℓ𝑅𝑃 and Srivastava’s (1983) predictive 

product estimator ℓ𝑆 are respectively the third best and second best choices on 

the basis of PRE and skewness. 
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 In view of the above conclusions, even if the performance of an estimator on the 

CR is not taken into account, selection of an estimator as the second or third best 

performer is not feasible. This issue arises due to changeable behavior of an estimator 

for different populations with varying numerical characteristics in terms of the variables 

even if in respect of a specific performance indicator. Bad performance of the 

comparable estimators on their achieved CRs in most of the cases is of course 

discouraging. But, using Student’s 𝑡 −distribution in place of normal distribution can 

improve the CR to some extent.     

 Findings of this numerical evaluation are only expressive and the conclusions 

drawn may not necessarily be fitted to all populations. But they lay out certain guidance 

on the overall capabilities of the estimators under comparison. It is therefore required 

to continue further work with other populations to gather better idea on the relative 

performance of different estimators. 
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