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Abstract 

 In this this paper, we define and study a new generalization of the Power distribution 

and the quadratic rank transmutation map (QRTM) in order to generate a flexible family 

of probability distribution taking Power distribution as the base distribution. The new 

distribution is called the beta transmuted Power (BTP) distribution. Some properties of 

the distribution such as moments, quantiles, mean deviation and order statistics are 

derived. The method of maximum likelihood is proposed to estimate the model 

parameters. The asymptotic confidence intervals for the parameters are also obtained 

based on asymptotic variance-covariance matrix. A simulation study is conducted to 

study the performance of the estimators. The importance and flexibility of the new model 

is proved empirically using a real data set.  

 

Keywords: beta power distribution, moments, parameter estimation, transmuted 

distribution. 

 

 

 

 

1. Introduction 

The power distribution is defined as the inverse of the Pareto distribution. Power 

function distribution is flexible lifetime distribution model which is the special case of 

beta distribution. Power function distribution was derived from Pareto distribution using 

the inverse transformation. According to Dallas (1976), if 𝑌 is power function 

distribution then 𝑌−1 is the Pareto distribution model. Meniconi and Barry (1996) 

explore the performance of Power function distribution on electrical components and 
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illustrated that power function distribution is most suitable distribution on electrical 

component data as compared to log-normal, Weibull and exponential models. 

Likewise, numerous probability models are used to model income distribution, but 

these models are mathematically more complicated to manage. The power function 

distribution on the other hand is very helpful in this regard, Naveed et. al. (2015). The 

power function distribution can be used to fit the distribution of likelihood ratios in 

statistical tests. The derivations of statistical properties of the power function 

distribution discussed by Johnson et. al. (1994), Balakrishnan and Nevzorov (2004), 

Kleiber and Kotz (2003) and Forbes et al. (2011). Characterizations of power function 

distribution using order statistics and record values has been studied by Ahsanullah 

(1973), Ahsanullah and Kabir (1974) discussed ordered statistics to estimate the scale 

and location of power function distribution. Zaka and Akhter (2014a), Zaka and Akhter 

(2014b) and Zaka et al. (2013) provided detailed discussion on parameter estimation 

of power function distribution using various estimation procedures like method of 

moments, maximum likelihood, percentiles, method of least square, and Bayesian 

estimation with various loss functions. Bayesian analysis of power function distribution 

was discussed using three single and as well as three double priors and the accuracy 

of these priors was assessed using simulation studies Sultan and Ahmad (2014). An 

initial test estimator for a scale parameter of the power function distribution was 

proposed by Sinha et al. (2008). Abdulsathar et al. (2015) estimate the Gini-index and 

Lorenz curve of power function distribution and the shape parameter using Bayesian 

approach. The estimators was developed using weighted squared error and squared 

error loss functions.  Cordeiro and dos Santos Brito (2012) derived Beta power 

function, Tahir et al. (2014) introduced Weibull power function (WPF) distribution, and 

Oguntunde et al.(2015) studied the Kumaraswamy Power function distribution. 

Cumulative distribution function (cdf) and probability density function (pdf) of power 

function distribution is given by;   

𝐺(𝑥) = (
𝑥

𝛽
)
𝛼

, 
(1) 

𝑔(𝑥) = 𝛼 𝛽−𝛼 𝑥𝛼−1,   0 < 𝑥 < 𝛽, 𝛼 > 0, 
(2) 

where 𝛽 is scale and 𝛼 is shape parameter. A random variable 𝑋 is said to have a 

transmuted Power probability distribution with parameter 𝛼 > 0 and |𝜆| ≤ 1, if its pdf 

is given by      

g(x) =
𝛼

𝛽𝛼  𝑥𝛼−1  (1 + λ − 2λ (
𝑥

𝛽
)
𝛼

), 
(3) 

the corresponding cumulative distribution function is 

G(x) = (
𝑥

𝛽
)
𝛼

   (1 + λ − λ (
𝑥

𝛽
)
𝛼

), 
(4) 

where 𝛽 is scale, 𝛼 is shape parameter and λ is the transmuted parameter.                                                                    

A class of generalized distributions F(x) has been receiving considerable attention over 

the last few years, in particular, after the studies by Eugene, Lee, and Famoye (2002) 

and Jones (2004). If G denotes the baseline cumulative distribution function (cdf) of a 
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random variable, then the beta generalized distribution is defined as 

𝐹(𝑥) = 𝐼𝐺(𝑥)(𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
∫ 𝑡𝑎−1𝐺(𝑥)

0
(1 − 𝑡)𝑏−1𝑑𝑡, 

(5) 

where 𝑎 > 0 and 𝑏 > 0 are shape parameters. Note that 𝐼𝑦(𝑎, 𝑏) =
𝐵𝑦(𝑎,𝑏)

𝐵(𝑎,𝑏)
, is the 

incomplete beta function ratio, and 𝐵𝑦(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1  
𝑦

0
𝑑𝑡, is the incomplete 

beta function, 𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
 is the beta function and Γ(. ) is the gamma function. The 

probability density function (pdf) of the Beta generated distribution has the form 

f(x) =
g(x)

B(𝑎,b)
 [G(𝑥)]a−1[1 − G(𝑥)]b−1. 

(6) 

This class of generalized distribution has received considerable attention over the 

last years and several classical distributions have been generalized using this 

formulation. We generalize the transmuted Power distribution (3) using this formulation 

in order to construct the beta transmuted Power (BTP) distribution. We provide a 

comprehensive description of mathematical properties of BTP distribution and its 

application to analyze real data sets.  

The rest of the paper is unfolded as follows. In Section 2 we define the BTP 

distribution and discuss some of its sub-models. In Section 3 we present the mixture 

representation of the BTP distribution. Section 4 discusses mathematical properties of 

the proposed family including ordinary moments, generating function, quantiles, mean 

deviation, order statistics and stress-strengh model. Estimation of parameters by the 

maximum likelihood method and performance of the estimators is assessed by 

simulation in Section 5. In Section 6, the distribution is used for analyzing real data. 

Finally, in Section 7, we make some concluding remarks on our study. 
 

2. The Beta Transmuted Power Distribution 

In this section, we provide the formulation of the beta transmuted Power (BTP) 
distribution. By inserting (4) into (5) the cumulative distribution function of the beta 
transmuted Power distribution with five parameters is given by 

𝐹(𝑥) = 𝐼
(
𝑥
𝛽

)
𝛼

   (1+λ−λ(
𝑥
𝛽
)
𝛼

)        
(𝑎, 𝑏) 

=
1

𝐵(𝑎, 𝑏)
∫ 𝑡𝑎−1

(
𝑥
𝛽

)
𝛼

   (1+λ−λ (
𝑥
𝛽

)
𝛼

)        

0

(1 − 𝑡)𝑏−1𝑑𝑡, 

(7) 

where 0 < x < β, α > 0, |λ| ≤ 1 and 𝑎 > 0, 𝑏 > 0. 
 

The cdf can be expressed in a closed form using the hypergeometric function (see 

Cordeiro and Nadarajah 2011) as follows: 

𝐹(𝑥) =
[(

𝑥

𝛽
)
𝛼
   (1+λ−λ(

𝑥

𝛽
)
𝛼
) ]

𝑎

𝑎𝐵(𝑎,𝑏)
. 2𝐹1 (𝑎, 1 − 𝑏; 𝑎 + 1; (

𝑥

𝛽
)
𝛼

   (1 + λ − λ (
𝑥

𝛽
)
𝛼

) ), 

where 2𝐹1(𝑐, 𝑑; 𝑒; 𝑧) = ∑
(𝑐)𝑘 (𝑑)𝑘 

(𝑒)𝑘

∞
𝑘=0  

(𝑧𝑘)

𝑘!
  is the Gaussian hypergeometric function 

where (𝑐)𝑘 is the ascending factorial defined by (assuming that (𝑐)0 = 1 ) 

(c)k = {c
(c + 1)(c + 2)… . (c + k − 1)    k = 1,2,3, …

1                                                           k = 0            
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Differentiating (7) with respect to x, we get the probability density function of the BTP 

distribution given by 

f(x) =
𝛼

  B(a, b)
 
𝑥𝛼−1

𝛽𝛼
 (1 + λ

− 2λ (
𝑥

𝛽
)
𝛼

) [(
𝑥

𝛽
)
𝛼

]
a−1

[(1 + λ (
𝑥

𝛽
)
𝛼

)]
a−1

[1

− (
𝑥

𝛽
)
𝛼

(1 + λ − λ (
𝑥

𝛽
)
𝛼

)]
b−1

. 

(8) 

The beta transmuted Power (BTP) distribution includes the following distributions 

as special case: 

 for λ = 0 , beta transmuted Power reduces to beta Power distribution. 

 For a = b = 1 , beta transmuted Power reduces to transmuted Power 

distribution. 

 For a = b = 1 and λ = 0 , beta transmuted Power reduces to Power distribution.  

Plots of the pdf (8) and the cdf (7) of beta transmuted Power distribution for some 

values of 𝛼, 𝛽, λ, a and b are given in Figures 1 and 2, respectively.  
 

 

Figure 1: Pdf of beta transmuted Power distribution for 𝛽 = 1 and (i) 𝛼 = 0.5, λ =

0, a = b = 1, (ii) 𝛼 = 0.75, λ = 1, a = 2, b = 2 , (iii) 𝛼 = 1, λ = 0.5, a = 2, b = 3 , (iv) 

𝛼 = 1.5, λ = 1, a = 2, b = 2 , (v) 𝛼 = 2, λ = 1, a = 2.5, b = 3.5. 
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Figure 2: Cdf of beta transmuted Power distribution for  𝛽 = 0.5 and (i) 𝛼 = 0.5, λ =

0, a = b = 1, (ii) 𝛼 = 0.75, λ = 1, a = 2, b = 2 , (iii) 𝛼 = 1, λ = 0.5, a = 2, b = 3 , (iv) 

𝛼 = 1.5, λ = 1, a = 2, b = 2 , (v) 𝛼 = 2, λ = 1, a = 2.5, b = 3.5. 

 

3. Mixture Representation  

In this section we find the series representations of the cdf and the pdf of the BTP 

distribution which will be useful to study its mathematical characteristics. As we shall 

see both pdf and cdf of BTP distribution can be expressed in terms of the Power 

distribution. By using (3) and the power series expansion of (1 − 𝑡)𝑏−1, we get 

1

𝐵(𝑎, 𝑏)
∫ 𝑡𝑎−1

𝐺(𝑥)

0

(1 − 𝑡)𝑏−1𝑑𝑡 =
1

𝐵(𝑎, 𝑏)
∑(−1)𝑗 (

𝑏 − 1
𝑗

)
[𝐺(𝑥)]𝑎+𝑗

(𝑎 + 𝑗)

∞

𝑗=0

 

with the binomial term (
𝑏 − 1

𝑗
) =

Γ(𝑏)

Γ(𝑏−𝑗) 𝑗!
 defined for any real 𝑏. Hence, (7) reduces to 

𝐹(𝑥) = ∑ (−1)𝑗 (
𝑏 − 1

𝑗
)

[(
𝑥

𝛽
)
𝛼
   (1+λ−λ(

𝑥

𝛽
)
𝛼
)]

a+j

𝐵(𝑎,𝑏)(𝑎+𝑗)
∞
𝑖=0 . (9) 

Again, using the binomial expansion of 

[(
𝑥

𝛽
)
𝛼

   (1 + λ − λ (
𝑥

𝛽
)
𝛼

)]
a+j

, we have 

F(x) = ∑ (−1)j+k (
b − 1

j
) (

a + j
k

) (
a + j

l
) λl

(
x
β
)
α(k+l)

B(a, b)(a + j)

∞

j,k,l=0

 

= ∑ (−1)𝑗+𝑘 (
𝑏 − 1

𝑗
) (

𝑎 + 𝑗
𝑘

) (
𝑎 + 𝑗

𝑙
) λ𝑙

(1 − G1(𝑥; 𝛼, 𝛽))
(𝑘+𝑙)

𝐵(𝑎, 𝑏)(𝑎 + 𝑗)

∞

𝑗,𝑘,𝑙=0

 
(10) 

where (G1(𝑥; 𝛼, 𝛽))
(𝑘+𝑙)

  is the Power cdf with 𝛼, 𝛽 parameter. Differentiating (10) 

with espect to 𝑥 gives a useful expansion of 𝑓(𝑥) as 

𝑓(𝑥) = ∑ 𝑤𝑘𝑙
∞
𝑘,𝑙=0  (𝑔(𝑥; 𝛼, 𝛽))

(𝑘+𝑙)
 , 0 < 𝑥 < 𝛽, (11) 
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where 

wkl = ∑(−1)j+k+l (
b − 1

j
) (

a + j
k

) (
a + j

l
)

λl

B(a, b)(a + j)

∞

j=0

, 

and (𝑔(𝑥; 𝛼, 𝛽))
(𝑘+𝑙)

 is the Power pdf with 𝛼 and 𝛽  parameters. 

 

4. Mathematical Characterizations 

In this section we provide some mathematical properties of the BTP distribution 

including the moments, moment generating function, quantiles, mean deviations, 

order statistics and stress-strengh model. 

4.1 Moments and moment generating function 

Moments are necessary and important in any statistical analysis, especially in 

applications. It can be used to study the most important features and characteristics 

of a distribution (e.g., mean, dispersion, skewness and kurtosis). Using the mixture 

representation described in section 3, the r-th moment of the BTP random variable 𝑋 

is given by 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟
∞

−∞

f(𝑥)dx 

= ∫ 𝑥𝑟
𝛽

0

∑ w𝑘𝑙

∞

𝑘,𝑙=0

 (𝑓(𝑥; 𝛼, 𝛽))
(𝑘+𝑙)

dx 

= ∫ ∑ w𝑘𝑙

∞

𝑘,𝑙=0

𝛽

0

𝑥𝑟   
𝛼

𝛽
 (𝑘 + 𝑙) (

𝑥

𝛽
)
𝛼(𝑘+𝑙)−1

dx 

= ∑ w𝑘𝑙

∞

𝑘,𝑙=0

 ∑ 𝛽𝑟

∞

𝑟=0

α(𝑘 + 𝑙)

α(𝑘 + 𝑙) + 𝑟
. 

(12) 

 

The mean, variance, skewness, and kurtosis of the BTP are given by: 

𝑀𝑒𝑎𝑛 = 𝐸(𝑋) = 𝛽 ∑ w𝑘𝑙

∞

𝑘,𝑙=0

 
α(𝑘 + 𝑙)

α(𝑘 + 𝑙) + 1
 

(13) 

𝑉𝑎𝑟(𝑥) = ∑ w𝑘𝑙

∞

𝑘,𝑙=0

 (
(𝑘 + 𝑙) 𝛼 𝛽2

(1 + (𝑘 + 𝑙) 𝛼)2(2 + (𝑘 + 𝑙) 𝛼)
), 

(14) 
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Skewness(x)

= ∑ wkl

∞

k,l=0

[
 
 
 
 
 

−2(−1 + (k + l) α)β

(1 + (k + l) α)(3 + (k + l) α)√
(k + l) α β2

(1 + (k + l) α)2(2 + (k + l) α)
  
]
 
 
 
 
 

, 

(15) 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑥) = ∑ w𝑘𝑙
∞
𝑘,𝑙=0 [9 +

1

(𝑘+𝑙)α
+

32

3+(𝑘+𝑙)α
−

81

4+(𝑘+𝑙)α
]                     

 

 

(16) 

 

Similarly, the moment generating function of  𝑋 can be obtained as below: 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥)
∞

−∞

𝑑𝑥 

= ∑ w𝑘𝑙

∞

𝑘,𝑙=0

 (𝑘 + 𝑙) 𝛼 𝛽−(𝑘+𝑙)𝛼 (−𝑡)−(𝑘+𝑙)𝛼[Γ((𝑘 + 𝑙)𝛼) − Γ((𝑘 + 𝑙)𝛼, −𝑡𝛽)]. 
(17) 

 

4.2 Quantiles   

Quantiles are the points in a distribution that relates to the rank order of values. The 

quantile function of a distribution is the real solution of 𝐹(𝑥𝑞) = 𝑞 for  0 ≤ 𝑞 ≤ 1. The 

quantiles of beta transmuted Power distribution are obtained from cdf (7) as 

X = β [(1 + λ + √(1 + λ)2 − 4λ (Iq
−1(a, b))) /2λ]

−
1
α

. 

(18) 

The following expansion for the inverse of the beta incomplete function 𝐼𝑞
−1(𝑎, 𝑏) 

can be found on the Wolfram website http://functions.wolfram.com/06.23.06.0004.01 

Iu
−1(a, b) = w +

b−1

a+1
w2 +

(b−1)(a2+3ab−a+5b−4)

2(a+1)2(a+2)
w3 +

(b−1)[a4+(6b−1)a3+(b+2)(8b−5)a2]

2(a+1)2(a+2)
w4 +

(b−1)[(33a2−30b+4)a+b(31a−47)+18]

3(a+1)3(a+2)(a+3)
w4 + O(P

5

a) 

where 𝑤 = {aB(𝑎, b )𝑞}
1

𝑎, 𝑎 > 0. 

 

4.3 Mean Deviation 

The amount of scatter in a population is evidently measured to some extent by the 

totality of deviations from the mean and median. If 𝑋 has a BTP distribution, then we 

can derive the mean deviations about the mean 𝜇 = 𝐸(𝑥) and about the median 𝑀 

as 

𝛿1(𝑥) = ∫ |x − μ|f(x)dx
𝛽

0

, 

and 
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δ2(x) = ∫ |x − M|f(x)dx
𝛽

0

. 

 

The mean of the distribution is obtained from (13), and the median is obtained 

by solving the equation 

𝐼
(
𝑥
𝛽

)
𝛼

   (1+λ−λ(
𝑥
𝛽

)
𝛼

)
(𝑎, 𝑏) =

1

2
. 

These measures can be calculated using the relationships: 

δ1(x) = ∫ (μ − x)f(x)dx
μ

0

+ ∫ (x − μ)
𝛽

μ

f(x)dx 

= 2∫ (𝜇 − 𝑥)𝑓(𝑥)𝑑𝑥
𝜇

0

= 2{𝜇𝐹(𝜇) − ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝜇

0

} 

𝛿1(𝑥) = 2{𝜇𝐹(𝜇) − 𝐽(𝜇)}  and  𝛿2(𝑥) = 𝜇 − 2 𝐽(𝜇), (19) 

where 𝐽(𝑡) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑡

0
. From (11) we have   

𝐽(𝑡) = ∑ w𝑘𝑙

∞

𝑘,𝑙=0

∫ 𝛼 (𝑘 + 𝑙) (
𝑥

𝛽
)
𝛼(𝑘+𝑙)𝑡

0

   𝑑𝑥 

𝐽(𝑡) = ∑ w𝑘𝑙

∞

𝑘,𝑙=0

(

 
 (𝑘 + 𝑙) 𝛼 𝑡 (

𝑡
𝛽
)

𝛼(𝑘+𝑙)

1 + (𝑘 + 𝑙)𝛼

)

 
 

. 

(20) 

Using (10), one can easily find 𝛿1(𝑥) and 𝛿2(𝑥) from (19). The quantity J(t) can 

also be used to determine Bonferroni and Lorenz curves, which have applications in 

economics to study income and poverty, and also in other fields like reliability, 

demography, insurance and medicine. Bonferroni and Lorenz functions are given by 

𝐵(𝜋) =
𝐽(𝑝)

(𝜋𝜇)
  and 𝐿(𝜋) =

𝐽(𝑝)

𝜇
 , respectively, where𝑝 = 𝑄(𝜋) is calculated from (18) for 

a given probability 𝜋. 

4.4 Order Statistics 

Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) denote the order statistics in a data set from the BTP distribution 

with cumulative distribution function (7) and probability density function (8), then the 

pdf 𝑓𝑖:𝑛(𝑥) of the ith order statistic 𝑋(𝑖) is given by 

fi:n(x) =
1

B(i, n − i + 1)
f(x)[F(x)]i−1[1 − F(x)]n−i, 
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where i = 1,2,… , n, and the cdf is given by 

𝐹𝑖:𝑛(𝑥) = ∑(
𝑛
𝑘
)

𝑛

𝑘=𝑖

[𝐹(𝑥)]𝑘[1 − 𝐹(𝑥)]𝑛−𝑘 

= ∫
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝐹(𝑥)

0

 𝑡𝑖−1[1 − 𝑡]𝑛−𝑖𝑑𝑡 

Using expressions (10) and (11) for F(x) and f(x), respectively, and applying the 

binomial expansion, the above equation of the pdf 𝑓𝑖:𝑛(𝑥) reduces to 

fi:n(x) =
1

B(i, n − i + 1)
 f(x) ∑(−1)s (

n − i
s

) [F(x)]i+s−1

n−i

s=0

 

𝑓𝑖:𝑛(𝑥) =
α

B(i, n − i + 1)
(
1

β
∑ wkl

∞

k,l=0

(k

+ l) (
x

β
)
α(k+l)−1

) ∑(−1)s+1 (
n − i

s
) [ ∑ wkl ((

x

β
)
α(k+l)

)

∞

k,l=0

]

i+s−1n−i

s=0

. 

(21) 

Writing 𝑢 = (
x

β
)
α

 , 𝑓𝑖:𝑛(𝑥) can be expressed as 

𝑓𝑖:𝑛(𝑥) =
α

 B(i, n − i + 1)
 
1

β
( ∑ wkl

∞

k,l=0

 (k

+ l) u(k+l)−1)∑(−1)𝑠+1 (
𝑛 − 𝑖

𝑠
) [ ∑ w𝑘𝑙

∞

𝑘,𝑙=0

 𝑢(𝑘+𝑙)]

𝑖+𝑠−1

.

𝑛−𝑖

𝑠=0

 

(22) 

We note that in (22) we can write 

∑ w𝑘𝑙

∞

𝑘,𝑙=0

𝑢(𝑘+𝑙) = ∑ 𝑤𝑚
∗

∞

𝑚=0

𝑢𝑚 

and 

∑ w𝑘𝑙

∞

𝑘,𝑙=0

 (𝑘 + 𝑙) 𝑢(𝑘+𝑙) = ∑ 𝑚 𝑤𝑚
∗

∞

𝑚=0

𝑢𝑚, 

where 𝑤𝑚
∗ ∑ w𝑘𝑙𝑘,𝑙:𝑘+𝑙=𝑚 . Further, from Gradshteyn and Ryzhik (2000), for any positive 

integer 𝑟 

(∑ a𝑘

∞

𝑘=0

𝑢𝑘)

𝑟

= ∑ 𝑑𝑟,𝑘

∞

𝑘=0

𝑢𝑘 , 
(23) 
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where the coefficients 𝑑𝑟,𝑘, for 𝑘 = 1,2, ..,  can be determined from the recurrence 

equation 

𝑑𝑟,𝑘 = (𝑘𝑎0
)
−1

∑[𝑚(𝑟 + 1) − 𝑘]

𝑘

𝑚=1

a𝑚𝑑𝑟,𝑘−𝑚 
(24) 

and 𝑑𝑟,0 = 𝑎0
𝑟  . Hence, 𝑑𝑟,𝑘 comes directly from 𝑑𝑟,0, … , 𝑑𝑟,𝑘−1 and, therefore, from 

a0, … , a𝑘. Using (23) and (24) it follows that 

𝑓𝑖:𝑛(𝑥) =
α

 𝐵(𝑖, 𝑛 − 𝑖 + 1)

1

β
(∑ 𝑚 𝑤𝑚

∗

∞

𝑚=0

𝑢𝑚)∑(−1)𝑠+1 (
𝑛 − 𝑖

𝑠
)(∑ d

𝑖+𝑠−1,𝑚𝑢𝑚

∞

𝑚=0

)

𝑛−𝑖

𝑠=0

, 

where 

d𝑖+𝑠−1,𝑚 = (𝑚 𝑤0
∗)−1 ∑[𝑞(𝑖 + 𝑠) − 𝑚]𝑤𝑚

∗ d𝑖+𝑠−1,𝑚−𝑞

𝑘

𝑞=1

, 

d𝑖+𝑠−1,0 = (𝑤0
∗)𝑖+𝑠−1 = (∑(−1)𝑗+1 (

𝑏 − 1
𝑗

)

∞

𝑗=0

 
1

𝐵(𝑎, 𝑏)(𝑎 + 𝑗)
)

𝑖+𝑠−1

. 

Combining terms, we obtain 

𝑓𝑖:𝑛(𝑥) =
α

 𝐵(𝑖, 𝑛 − 𝑖 + 1)

1

β
∑(−1)𝑠+1 (

𝑛 − 𝑖
𝑠

) ∑ ∑ 𝑚d
𝑖+𝑠−1,𝑡𝑤∗

𝑡𝑤∗
𝑚𝑢𝑚+𝑡

∞

𝑡=0

 

∞

𝑚=𝑙

𝑛−𝑖

𝑠=0

 

=
1

 𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑(−1)𝑠+1 (

𝑛 − 𝑖
𝑠

) ∑ ∑
𝑚d

𝑖+𝑠−1,𝑡𝑤𝑚
∗

𝑚 + 𝑡

∞

𝑡=0

 [
α

β
(𝑚 + 𝑡) (

x

β
)

α(m+t)−1

]

∞

𝑚=𝑙

𝑛−𝑖

𝑠=0

 

𝑓𝑖:𝑛(𝑥) = ∑ ∑ 𝑐𝑖(𝑚,𝑡)
∞

𝑡=0

 𝑔(𝑥:β, (𝑚 + 𝑡)α)

∞

𝑚=𝑙

, 
(25) 

 

where 𝑔(𝑥: β, (𝑚 + 𝑡)α) denotes the pdf of a Power distribution with parameter β and 

(𝑚 + 𝑡)α 

𝑐𝑖(𝑚, 𝑡) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝑚 𝑤𝑚
∗

𝑚 + 𝑡
∑(−1)𝑠+1 (

𝑛 − 𝑖
𝑠

) d𝑖+𝑠−1,𝑡

𝑛−𝑖

𝑠=0

. 
(26) 

 

4.5 Stress-Strength Model 

A stress-strength model describes the life of a component which has a random 

strength 𝑋1 and is subjected to a random stress 𝑋2. The component functions 

satisfactorily as long as 𝑋1 > 𝑋2, and fails when 𝑋1 < 𝑋2. The probability 𝑅 =

𝑃𝑟(𝑋1 > 𝑋2) defines the component reliability. Stress-strength models have many 
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applications especially in engineering concepts such as structures, deterioration of 

rocket motors, static fatigue of ceramic components, fatigue failure of aircraft 

structures and the aging of concrete pressure vessels.  

Consider 𝑋1and 𝑋2 to be independently distributed, with 𝑋1~𝐵𝑇𝑃(α1, β, λ1, a1, b1) 

and 𝑋2~𝐵𝑇𝑃(α2, β, λ2, a2, b2). The cdf 𝐹1of 𝑋1 and pdf 𝑓2 of 𝑋2 obtained from (10) and 

(11), respectively. Then,  

𝑅 = 𝑃𝑟(𝑋1 > 𝑋2) = ∫ 𝑓2(𝑦)[1 − 𝐹1(𝑦)]𝑑𝑦
β

0

 

= 1 + ∑ 𝑤𝑘𝑙
(1)

∞

𝑘,𝑙=0

∫ 𝑓2(𝑦) (
y

β
)
α(k+l)

𝑑𝑦
β

0

 

= ∑ 𝑤𝑘𝑙
(1)

∞

𝑘,𝑙=0

𝐴(𝑘, 𝑙), 

where 

𝑤𝑘𝑙
(𝑖) = ∑(−1)𝑗+𝑘+𝑙 (

𝑏𝑖 − 1
𝑗

)(
𝑎𝑖 + 𝑗

𝑘
) (

𝑎𝑖 + 𝑗
𝑙

)
λ𝑙

𝐵(𝑎, 𝑏)(𝑎𝑖 + 𝑗)

∞

𝑗=0

 ,  

 and 

𝐴(𝑘, 𝑙) = ∫ 𝑓2(𝑦) (
y

β
)
α(k+l)

𝑑𝑦
β

0

. 

Now, 

𝐴(𝑘, 𝑙) = ∑ 𝑤𝑟𝑠
(2)

∞

𝑟,𝑠=0

∫ (r + s) 
𝛼2

𝛽
  [(

𝑦

β
)
[𝛼2(r+s)+𝛼1(k+l)]−1

] dy
β

0

 

= ∑ 𝑤𝑟𝑠
(2)

∞

𝑟,𝑠=0

𝛼2(r + s) 

𝛼1(k + l) + 𝛼2(r + s)
. 

Hence, 

𝑅 = 1 + ∑ 𝑤𝑘𝑙
(1)

∞

𝑘,𝑙=0

∑ 𝑤𝑟𝑠
(2)

∞

𝑟,𝑠=0

𝛼2(r + s) 

𝛼1(k + l) + 𝛼2(r + s)
 

= 1 + ∑ ∑𝑤𝑘
∗(1)

 𝑤𝑟
∗(2)

∞

𝑟=0

𝑟 𝛼2

𝑘 𝛼1 + 𝑟 𝛼2

∞

𝑘=0

, 
(27) 
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where 

𝑤𝑚
∗(𝑖) = ∑ 𝑤𝑘𝑙

∗(𝑖)

𝑘,𝑙:𝑘+𝑙=𝑚

,     𝑖 = 1,2. 

 

5. Parameter Estimation  

In this section we consider maximum likelihood estimation (MLE) to estimate the 

involved parameters. Asymptotic distribution of Θ̂ = (𝛼̂𝑖, 𝛽̂𝑖 , 𝜆̂𝑖 , 𝑎̂𝑖 , 𝑏̂𝑖) are obtained using 

the elements of the inverse Fisher information matrix. 

5.1 Maximum Likelihood Estimation 

In this section, we consider estimation by the method of maximum likelihood. Let 

𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample from the beta transmuted Power distribution with 

observed values 𝑥1, 𝑥2, … , 𝑥𝑛 and Θ = ( 𝛼 , β, 𝜆, 𝑎, 𝑏 ) be parameter vector. Then sample 

likelihood and Log-Likelihood functions of BTP is obtained as   

L(Θ) = (
α β−α

  B(a, b)
)
n

∏xi
α−1

n

i=1

    (1 + λ

− 2λ (
xi

β
)
α

) [(
xi

β
)
α

]
a−1

[(1 + λ (
xi

β
)
α

)]
a−1

[1

− (
xi

β
)
α

(1 + λ − λ (
xi

β
)
α

)]
b−1

. 

(28) 

 

The log-likelihood function is 

l(Θ) =  n log 𝛼 − 𝛼 n log𝛽 − nlog[B(a, b )] + (𝛼 − 1)∑𝑙𝑜𝑔xi

n

i=1

+ ∑ Log

n

i=1

[1 + λ − 2λ (
xi

𝛽
)
𝛼

] + (a − 1)∑Log

n

i=1

(
xi

𝛽
)
𝛼

+ (a

− 1)∑Log

n

i=1

(1 + λ (
xi

𝛽
)
𝛼

)

+ (b − 1) ∑Log

n

i=1

[(1 − (
xi

𝛽
)
𝛼

) (1 + λ − λ (
xi

𝛽
)
𝛼

)]. 

(29) 

We differentiate (29) with respect to 𝛼 , β, 𝜆, 𝑎 𝑎𝑛𝑑 𝑏 respectively to obtain the 

elements of score vector 
𝜕𝑙(Θ)

𝜕Θ
= (

𝜕𝑙(Θ)

𝜕𝛼
,
𝜕𝑙(Θ)

𝜕𝛽
,
𝜕𝑙(Θ)

𝜕𝜆
,
𝜕𝑙(Θ)

𝜕a
,
𝜕𝑙(Θ)

𝜕b
)
𝑇

 as below 



Indonesian Journal of Statistics and Its Applications. Vol 3 No 1 (2019), 105 - 123  117 

 

 
 

∂l(Θ)

∂α

=
n

 α 
− n log β + ∑Log

n

i=1

xi + (a − 1)∑log (
xi

β
)

n

i=1

+ 2λ∑
log (

xi

β
) (

xi

β
)
α

(1 + λ − 2λ (
xi

β
)
α

)

n

i=1

+ (a − 1)λ∑
log (

xi

β
) (

xi

β
)
α

(1 + λ (
xi

β
)
α

)

n

i=1

− (b

− 1)∑
λ log (

xi

β
) (

xi

β
)
α

(1 − (
xi

β
)

α

) +  log (
xi

β
) (

xi

β
)
α

(1 + λ − λ (
xi

β
)
α

)

(1 − (
xi

β
)
α

) (1 + λ − λ (
xi

β
)
α

)

n

i=1

 

(30) 

∂l(Θ)

∂𝛽

= −
n𝛼

  𝛽 
−

(a − 1)n𝛼

  𝛽 

+
2𝛼λ

  𝛽2 
∑

xi (
xi

𝛽
)
𝛼−1

(1 + λ − 2λ (
xi
𝛽

)
𝛼

)

n

i=1

(a − 1)
𝛼λ

  𝛽2 
∑

xi (
xi

𝛽
)
𝛼−1

(1 + λ (
xi
𝛽
)
𝛼

)

n

i=1

+ (b − 1)
𝛼

  𝛽2 
∑

λxi (
xi

𝛽
)
𝛼−1

(1 − (
xi

𝛽
)
𝛼

) + xi (
xi

𝛽
)
𝛼−1

(1 + λ − λ (
xi

𝛽
)
𝛼

)

(1 − (
xi
𝛽
)
𝛼

) (1 + λ − λ (
xi
𝛽

)
𝛼

)
,

n

i=1

 

(31) 

∂l(Θ)

∂λ
= ∑

(1 − 2 (
xi

𝛽
)
𝛼

)

(1 + λ − 2λ (
xi
𝛽

)
𝛼

)

n

i=1

+ (a − 1)∑
(
xi

𝛽
)
𝛼

(1 + λ (
xi
𝛽
)
𝛼

)

n

i=1

+ (b − 1)∑
(1 − (

xi

𝛽
)
𝛼

)

(1 + λ − λ (
xi
𝛽
)

𝛼

)

n

i=1

 

(32) 

∂l(Θ)

∂a
= −n[Ψ(a) − Ψ(a + b)] + ∑Log

n

i=1

(
xi

𝛽
)
𝛼

+ ∑Log

n

i=1

(1 + λ (
xi

𝛽
)
𝛼

) 
(33) 

∂l(Θ)

∂b
= −n[Ψ(b) − Ψ(a + b)] + ∑Log

n

i=1

[(1 − (
xi

𝛽
)
𝛼

) (1 + λ − λ (
xi

𝛽
)
𝛼

)], 
(34) 

where Ψ(𝑥) is the digamma function defined by Ψ(𝑥) =
𝑑 log𝛤(𝑥)

𝑑𝑥
 , and  𝛤(𝑥) is the 

Gamma function. The solutions of nonlinear equations (30-34) are complicated to 

obtain, therefore an iterative procedure is applied to solve these equations numerically. 
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5.2 Asymptotic Distribution 

We obtain the asymptotic distribution of  Θ̂ = (𝛼̂𝑖 , 𝛽̂𝑖 , 𝜆̂𝑖 , 𝑎̂𝑖, 𝑏̂𝑖). The asymptotic 

variances of MLEs are given by the elements of the inverse of the Fisher information 

matrix. The Fisher information matrix of Θ, denoted by 𝐽(Θ) = 𝐸(𝐼, Θ), where 𝐼𝑖𝑗 , 𝑖, 𝑗 =

1,2,3,4,5 is the observed information matrix. The second partial derivatives of the 

maximum likelihood function are given as the following: 

I =

(

 
 

I11 I12 I13     I14       I15

I21 I22 I23    I24       I25

I31 I32 I33     I34       I35

I41    I42     I43      I44        I45 
I51    I52     I53      I54        I55 )

 
 

. 

       The exact mathematical expressions for 𝐽(Θ) = 𝐸(𝐼, Θ) are complicated to obtain. 

Therefore, the observed Fisher information matrix can be used instead of the Fisher 

information matrix. The variance-covariance matrix may be approximated as 𝑉𝑖,𝑗 = 𝐼𝑖,𝑗
−1. 

The asymptotic distribution of the maximum likelihood can be written as follows (see 

Miller 1981). 

[(α̂ − α), (β̂ − β), (λ̂ − λ), (â − a), (b̂ − b)]~N5(0, V). (35) 

        Since 𝑉 involves the parameters   𝛼, 𝛽, 𝜆, 𝑎 𝑎𝑛𝑑 𝑏, we replace the parameters by 

the corresponding MLEs in order to obtain an estimate of 𝑉 , which is denoted by 𝑉̂ . 

By using (35), approximate 100(1 − 𝛾)% confidence intervals for 𝛼, 𝛽, 𝜆, 𝑎 𝑎𝑛𝑑 𝑏 are 

determined, respectively, as 

α̂ ± Zγ

2

√V̂11, 𝛽̂ ± 𝑍𝛾

2

√𝑉̂22, λ̂ ± 𝑍𝛾

2

√𝑉̂33, 𝑎̂ ± 𝑍𝛾

2

√𝑉̂44, 𝑏̂ ± 𝑍𝛾

2

√𝑉̂55,  

where 𝑍𝛾 is the upper 100𝛾 − 𝑡ℎ percentile of the standard normal distribution. 

    In the order to numerically illustrate the estimation of the involved parameters, we 

have simulated the ML estimators for different sample sizes 𝑛 =

(10, 20, 50, 80, 100, 150, 300). The calculation of the estimation is based on 1000 

simulated samples from the BTP. The MLEs and 95% confidence intervals are 

computed using the observed Fisher information matrix. Table 1 shows the average 

estimates, biases, standard errors (SE) and mean squared errors (MSE). In Table 2, 

the average 95% confidence limits (LCL & UCL ) for the parameters 𝛼, 𝛽, 𝜆, 𝑎 𝑎𝑛𝑑 𝑏 are 

reported. 
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Table 1: Average  of the estimates,  bias, SE and MSE for BTP distribution. 

N 
 

  Estimates 
 

  Bias 
 

  SE 
 

 MSE 
 

10 
 
 
 

𝛼̂ = 2.29881 

𝛽̂ = 0.89005 

𝜆̂ = 1.51930 

𝑎̂ = 3.10239 

𝑏̂ = 3.20428 

0.43431 
0.80758 
0.78028 
0.95079 
0.69279 

0.04157 
0.37382 
0.05376 
0.06238 
0.08344 

0.18863 
0.65219 
0.60884 
0.90400 
0.47996 

20 
 
 
 

𝛼̂ = 2.33817 

𝛽̂ = 0.87941 

𝜆̂ = 1.57805 

𝑎̂ = 3.14459 

𝑏̂ = 3.25189 

0.41281 
0.77197 
0.75500 
0.92847 
0.68519 

0.03826 
0.34940 
0.05099 
0.06006 
0.05321 

0.05712 
0.62721 
0.53062 
0.87075 
0.45436 

50 
 
 

𝛼̂ = 2.36205 

𝛽̂ = 0.87381 

𝜆̂ = 1.61311 

𝑎̂ = 3.16878 

𝑏̂ = 3.28095 

0.40127 
0.72128 
0.72006 
0.90247 
0.65761 

0.03526 
0.31738 
0.04372 
0.05457 
0.02139 

0.01229 
0.60867 
0.33647 
0.82356 
0.42808 

80 
 
 

𝛼̂ = 2.36805 

𝛽̂ = 0.87249 

𝜆̂ = 1.62186 
𝑎̂ = 3.17470 

𝑏̂ = 3.28827 

0.32562 
0.69312 
0.70813 
0.88237 
0.62711 

0.03283 
0.28323 
0.04022 
0.05017 
0.01338  

0.00512 
0.54904 
0.30795 
0.76173 
0.32132 

100 
 
 

𝛼̂ = 2.37005 

𝛽̂ = 0.87207 

𝜆̂ = 1.62478 

𝑎̂ = 3.17666 

𝑏̂ = 3.29072 

0.29870 
0.67932 
0.68176 
0.86234 
0.60695 

0.03014 
0.25648 
0.03281 
0.04413 
0.01071 

0.00340 
0.52916 
0.23844 
0.42611 
0.27190 

150 
 
 

𝛼̂ = 2.37273 

𝛽̂ = 0.87150 

𝜆̂ = 1.62867 

𝑎̂ = 3.17927 

𝑏̂ = 3.29399 

0.22186 
0.63303 
0.61823 
0.82304 
0.56873 

0.02617 
0.21575 
0.03012 
0.04145 
0.00714 

0.00145 
0.42329 
0.13910 
0.12602 
0.11600 

300 
 
 

𝛼̂ = 2.37407 

𝛽̂ = 0.87122 

𝜆̂ = 1.63061 

𝑎̂ = 3.18057 

𝑏̂ = 3.29563 

0.14975 
0.60933 
0.58261 
0.76228 
0.50866 

0.02317 
0.19313 
0.02489 
0.03177  
0.00536 

0.00097 
0.32941 
0.03943 
0.02598 
0.01447 

 

From Table1 it is observed that when the sample size n increases, the MLE, Bias, SE 

and MSEs of parameters 𝛼, 𝛽, 𝜆, 𝑎 𝑎𝑛𝑑 𝑏 decrease. This verifies the consistency 

properties of the estimates.  
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Table 2: Average 95% confidence intervals for the parameters 

n 𝛼̂ β̂ λ̂ â b̂ 

10 (1.604, 1.619) (0.621, 1.811) (0.686, 0.747) (0.298, 0.841) (0.132, 0.915) 

20 (1.583, 1.594) (0.265, 1.453) (0.698, 0.723) (0.297, 0.758) (0.223, 0.765) 

50 (1.294, 1.322) (0.496, 1.129) (0.625, 0.649) (0.433, 0.822) (0.175, 0.610) 

80 (1.292, 1.298) (0.163, 1.157) (0.664, 0.644) (0.519, 0.786) (0.221, 0.565) 

100 (1.290, 1.296) (0.756, 0.976) (0.681, 0.642) (0.518, 0.773) (0.239, 0.547) 

150 (1.289, 1.294) (0.766, 0.954) (0.611, 0.688) (0.515, 0.749) (0.268, 0.519) 

300 (1.289, 1.292) (0.569, 0.893) (0.645, 0.634) (0.526, 0.719) (0.346, 0.482) 

 

Table 2 shows that as the sample size increases, the average confidence lengths 

decrease and the intervals tend towards symmetry. 

 

6. Application  

In this section, we use real data set to compare the fits of the new model and illustrate 

the usefulness of  the new model BTP and some of the models generated from Power 

distributions, namely: Power distribution (P), transmuted Power distribution (TP), and 

beta Power distribution (BP). The data set is obtained from Ghitany et al. (2008) 

consists of 100 observations on waiting time (in minutes) before the customer 

received service in a bank. The data are as follows: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 

2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 

4.8, 4.9, 4.9, 5, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.4, 7.6, 

7.7, 8, 8.2, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7,10.9, 11, 11, 11.1, 11.2, 

11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 

17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19, 19.9, 20.6,21.3, 21.4, 21.9, 23, 27, 31.6, 33.1, 

38.5. 

Table 3. Descriptive statistic of the Ghitany et. al. data 

Min 

0.8 

1st. Qu. 

4.65 

Median 

8.1 

Mean 

9.877 

3rd. Qu. 

13.05 

Var. 

52.374 

Ske. 

1.473 

Kur. 

5.540 

 
In order to compare our results with other models. We estimate the parameters of the 
BTP model and compare its appropriateness to model this data with its sub-models 
including beta Power (BP), transmuted Power (TP) and Power (P) distributions.  

The model selection is carried out by measuring the maximized log-likelihood 
(−2ℓ̂), the Akaike information criterion (AIC), the Bayesian information criterion (BIC), 
the consistent Akaike information criteria (CAIC) and the Hannan-Quinn information 
criterion (HQIC). Note that the smaller values of goodness-of-fit measures the better 
the fit of the data. These measures are defined as 
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𝐴𝐼𝐶 = 2𝐾 − 2𝑙(Θ̂),  𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘+1)

𝑛−𝑘−1
,  𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2𝑙(Θ̂), 

and 

𝐻𝑄𝐼𝐶 = 2𝑘𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) − 2𝑙(Θ̂), 

where 𝑙(Θ̂) denotes the log-likelihood function evaluated at the maximum likelihood 

estimates, 𝑘 is the number of parameters in the statistical model, 𝑛 the sample size 
and Θ is the parameters. The, −2ℓ , 𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝐶𝐴𝐼𝐶 and 𝐻𝑄𝐼𝐶 statistics for each model 
is provided in Table 3. It can be seen that BTP distribution leads to a better fit than 
any of its sub-models. 
 

Table 4: The −2ℓ, AIC, CAIC, BIC and HQIC statistic to Ghitany data. 

Distribution −2ℓ AIC CAIC BIC HQIQ 

BTP 436.1367 446.1367 446.7750 459.1626 451.4085 

BP 427.5962 437.5962 438.2345 450.6221 442.8680 

TP 423.7662 433.7662 434.4045 446.7920 439.0380 

P 418.2667 428.2667 428.9050 441.2926 433.5385 

 

The values of statistic to measure the goodness of the BTP distribution are 
provided in Table 4. To compare the BTP with beta Power (BP), transmuted Power 
(TP) and the Power (P) distributions. Since the values of the AIC, BIC, CAIC and 
HQIC are smaller for the BTP distribution compared with those values of the other 
models, the new distribution (BTP) could be chosen as the best model. 

 

7. Concluding Remarks 

In this paper, we have introduced the so-called beta transmuted Power (BTP) 
distribution. This is a generalization of the transmuted Power distribution using the 
genesis of the beta distribution. Many distributions including Power, beta Power and 
transmuted Power are embedded in this newly developed BTP distribution. For new 
generalization we derived its mathematical properties, explicit expressions for the 
moments, quantile function, generating functions and obtain the order statistics. We 
discuss estimation of the parameters by maximum likelihood and provide the 
information matrix. An application to a real data set indicates that the fit of the new 
model is superior to the fits of its principal sub-models. 

 
 

Acknowledgment.  The authors are grateful to the editor and anonymous 
reviewer for their constructive comments and valuable suggestions which certainly 
improved the presentation and quality of the paper. 

 
 

 



122  Alabid and Hurairah 
 

References 

Ahsanullah, M. (1973). A characterization of the power function 
distribution. Communications in Statistics-Theory and Methods, 2(3), 259-262. 

Ahsanullah, M., & Kabir, A. L. (1974). A characterization of the power function 
distribution. The Canadian Journal of Statistics/La Revue Canadienne de 
Statistique, 95-98. 

Balakrishnan, N., & Nevzorov, V. B. (2004). A primer on statistical distributions. John 
Wiley & Sons. 

Cordeiro, G. M., & Nadarajah, S. (2011). Closed-form expressions for moments of a 
class of beta generalized distributions. Brazilian journal of probability and 
statistics, 25(1), 14-33. 

Cordeiro, G. M., & dos Santos Brito, R. (2012). The beta power distribution. Brazilian 
journal of probability and statistics, 26(1), 88-112. 

Dallas, A. C. (1976). Characterizing the Pareto and power distributions. Annals of the 
Institute of Statistical Mathematics, 28(1), 491-497. 

Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its 
applications. Communications in Statistics-Theory and methods, 31(4), 497-512. 

Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. 
John Wiley & Sons. 

Ghitany, M. E., Atieh, B., & Nadarajah, S. (2008). Lindley distribution and its 
application. Mathematics and computers in simulation, 78(4), 493-506. 

Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products. 
Academic press. 

Jones, M. C. (2004). Families of distributions arising from distributions of order 
statistics. Test, 13(1), 1-43. 

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions. 
New York: John Wiley and Sons. 

Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial 
sciences (Vol. 470). John Wiley & Sons. 

Meniconi, M., & Barry, D. M. (1996). The power function distribution: A useful and 
simple distribution to assess electrical component reliability. Microelectronics 
Reliability, 36(9), 1207-1212. 

Miller, J. R. (1981). Survival analysis. New York: John Wiley. 

Naveed-Shahzad, M., Asghar, Z., Shehzad, F., & Shahzadi, M. (2015). Parameter 
estimation of power function distribution with TL-moments. Revista Colombiana de 
Estadística, 38(2), 321-334. 

 



Indonesian Journal of Statistics and Its Applications. Vol 3 No 1 (2019), 105 - 123  123 

 

 
 

Oguntunde, P. E., Odetunmibi, O., & Okagbue, H. I. (2015). The Kumaraswamy-power 
distribution: A generalization of the power distribution. International Journal of 
Mathematical Analysis, 9(13), 637-645. 

Rajesh, G., Renjini, K. R., Jeevanand, E. S., & Abdul-Sathar, E. I. (2015). Bayes 
estimation of Lorenz curve and Gini-index for power function distribution. South 
African Statistical Journal, 49(1), 21-33. 

Sinha, S. K., Singh, P., Singh, D. C., & Singh, R. (2008). Preliminary test estimators 
for the scale parameter of power function distribution. Journal of Reliability and 
Statistical Studies, 1(1), 18-24. 

Sultan, R., Sultan, H., & Ahmad, S. P. (2014). Bayesian analysis of power function 
distribution under double priors. Journal of Statistics Applications & 
Probability, 3(2), 239-249. 

Tahir, M., Alizadeh, M., Mansoor, M., Cordeiro, G. M., & Zubair, M. (2016). The Weibull-
power function distribution with applications. Hacettepe Journal of Mathematics and 
Statistics, 45(1), 245-265. 

Zaka, A., & Akhter, A. S. (2014a). Modified moment, maximum likelihood and percentile 
estimators for the parameters of the Power Function distribution. Pakistan Journal 
of Statistics and Operation Research, 10(4), 369-388. 

Zaka, A., & Akhter, A. S. (2014b). Bayesian analysis of power function distribution 
using different loss functions. International Journal of Hybrid Information 
Technology, 7(6), 229-244. 

Zaka, A., Feroze, N., & Akhter, A. S. (2013). A note on Modified Estimators for the 
Parameters of the Power Function Distribution. International Journal of Advanced 
Science and Technology, 59, 71-84. 


