Perbandingan Kinerja Regresi Conway-Maxwell-Poisson dan Poisson-Tweedie dalam Mengatasi Overdispersi Melalui Data Simulasi

Authors

  • Ahmad Rifai Nasution Department of Statistics IPB University
  • Kusman Sadik
  • Akbar Rizki

DOI:

https://doi.org/10.29244/xplore.v11i3.1018

Keywords:

COM-Poisson, Compound Poisson-Tw, overdispersion, Poisson

Abstract

Poisson regression is a standard method to model count data. Modeling count data frequently causes overdispersion which means that Poisson regression is less precise to model it as Poisson regression has the assumption of equidispersion. Overdispersion can be overcome by using Conway-Maxwell-Poisson (COM-Poisson) and Poisson Tweedie (Poisson-Tw) regression. The best model is determined based on the lowest value of RMSE, absolute bias, variance of parameter estimator, AIC, and BIC. This research uses simulation data. The response variable of simulation data is generated to follow Generalized Poisson distribution with combinations of  and  The result of simulation study shows that COM-Poisson and Compound Poisson-Tw are the alternatives to model overdispersed count data, but COM-Poisson is better to overcome overdispersion with higher dispersion parameter.

Downloads

Published

2022-09-30

How to Cite

Nasution, A. R., Sadik, K., & Rizki, A. (2022). Perbandingan Kinerja Regresi Conway-Maxwell-Poisson dan Poisson-Tweedie dalam Mengatasi Overdispersi Melalui Data Simulasi. Xplore: Journal of Statistics, 11(3), 215–225. https://doi.org/10.29244/xplore.v11i3.1018

Most read articles by the same author(s)

1 2 3 > >>