Grouping Provinces in Indonesia Based on the Causes of Stunting Variables using Hierarchical Clustering Analysis
Pengelompokan Provinsi di Indonesia Berdasarkan Peubah Penyebab Stunting Menggunakan Analisis Cluster Hierarki
DOI:
https://doi.org/10.29244/ijsa.v7i1p32-43Keywords:
cophenetic correlation coefficient, hierarchical clustering analysis, silhouette coefficient, stuntingAbstract
Stunting is a condition due to chronic malnutrition that causes children to be shorter in height compared to their age. The prevalence of stunting in Indonesia still exceeds the standards set by WHO. This study aims to classify provinces in Indonesia based on the characteristics of the causes of stunting. Cluster analysis is a statistical method used to group objects with similar characteristics. Province grouping is done using hierarchical cluster analysis consisting of Single Linkage, Complete Linkage, Average Linkage, Ward's method, and Centroid method. The Cophenetic correlation coefficient was used to determine the best cluster method and the optimal number of clusters using the Silhouette coefficient. The results show that the centroid method has the highest Cophenetic correlation coefficient with four clusters. The first cluster consists of 1 province with low stunting characteristics, the second cluster consists of 3 provinces with high stunting characteristics, the third cluster consists of 22 provinces with very high stunting characteristics, and the fourth cluster consists of 8 provinces with moderate stunting characteristics.
Downloads
References
Aditianti, Sudikno, Raswanti I, Izwardy D, Irianto SE. 2020. Prevalensi dan faktor risiko stunting pada balita 24-59 bulan di Indonesia: analisis data riset kesehatan dasar 2018. Nutr Food Res. 43(2):51–64.
Alfina T, Santosa B, Barakbah AR. 2012. Analisa perbandingan metode hierarchical clustering, k-means dan gabungan keduanya dalam membentuk cluster data (studi kasus: problem kerja praktek Jurusan Teknik Industri ITS). J Tek POMITS. 1(1):1–5.
Dani ATR, Wahyuningsih S, Rizki NA. 2019. Penerapan hierarchical clustering metode agglomerative pada data runtun waktu. Jambura J Math. 1(2):64–78. doi:http://dx.doi.org/10.34312%2Fjjom.v1i2.2354.
Hair JF, Black WC, Babin BJ, Anderson RE. 2014. Multivariate Data Analysis. Ed ke-12. Harlow: Pearson.
Hidayangsih PS, Dharmayanti I, Tjandrarini DH, Anwar A, Azhar K, Paramita A, Kusrini I, Lestari H, Setiadji B. 2021. Indeks Wash (Water Sanitation Hygiene) Indonesia. Jakarta: Nas Media Pustaka.
[Kemenkes] Kementerian Kesehatan. 2019. Laporan Nasional Riskesdas 2018. Jakarta: Badan Penelitian dan Pengembangan Kesehatan.
Muthahharah I, Juhari A. 2021. Cluster analysis with complete linkage and ward's method for health service data in Makassar City. J Varian. 4(2):109–116. doi:10.30812/varian.v4i2.883.
Nurhasanah N, Salwa N, Ornila L, Hasan A, Mardhani M. 2021. Classifying regencies and cities on human development index dimensions: application of k-means cluster analysis. J Sains Sosio Hum. 5(2):913–918. doi:10.22437/jssh.v5i2.15801.
Prabowo RA, Nisa K, Faisol A, Setiawan E. 2020. Simulasi pemilihan metode analisis cluster hirarki agglomerative terbaik antara average linkage dan ward pada data yang mengandung masalah multikolinearitas. J Siger Mat. 1(2):49–55. doi:10.23960/jsm.v1i2.2497.
Rachmatin D. 2014. Aplikasi metode-metode agglomerative dalam analisis klaster pada data tingkat polusi udara. Infin J. 3(2):133–149. doi:10.22460/infinity.v3i2.59.
Satriawan D, Styawan DA. 2021. Pengelompokkan provinsi di Indonesia berdasarkan faktor penyebab balita stunting menggunakan analisis cluster hierarki. J Stat dan Apl. 5(1):61–70. doi:10.21009/jsa.05106.
Shrestha N. 2021. Factor analysis as a tool for survey analysis. Am J Appl Math Stat. 9(1):4–11. doi:10.12691/ajams-9-1-2.
Simanjuntak KP, Khaira U. 2021. Pengelompokkan titik api di Provinsi Jambi dengan algoritma agglomerative hierarchical clustering. MALCOM Indones J Mach Learn Comput Sci. 1(1):7–16.
Widari S, Bachtiar N, Primayesa E. 2021. Faktor penentu stunting: analisis komparasi masa Millenium Development Goals (MDGs) dan Sustainable Development Goals (SDGs) di Indonesia. J Ilm Univ Batanghari Jambi. 21(3):1338–1346. doi:10.33087/jiubj.v21i3.1726.