Ordinal Logistic Regression Model of Micro, Small, and Medium-Sized Enterprises Income: A Case Study of Micro, Small and Medium-Sized Enterprises in Surabaya
DOI:
https://doi.org/10.29244/ijsa.v8i2p143-154Keywords:
income, MSMEs, ordinal logistic regression, pandemicAbstract
Micro, Small, and Medium Enterprises (MSMEs) is a business sector that is able to make a significant contribution to economic recovery in Indonesia. In Surabaya, there are many MSMEs with various fields, both food and non-food sectors which include services, trade, etc. MSMEs actually have great potential to boost the economic growth of the people of Surabaya. Especially during the COVID-19 pandemic, MSMEs owners must be able to strategize how their income can be stable or even bigger. Therefore, it is very important to know what factors can boost MSMEs income in Surabaya. In this study, it will be examined what factors can affect the income of MSMEs in Surabaya. The method used in this study is Ordinal Logistic Regression which aims to determine which independent variables or factors affect the dependent variable which in this case is MSMEs income. Based on the results of the analysis, it can be seen that the variables that affect MSMEs income are MSMEs Location, MSME Activities, and MSME Outreach.
Keywords: ordinal logistic regression, MSMEs, income.
Downloads
References
Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons, Inc.
Alifah, A. N., & Edina, A. I. (2022). Analisis Faktor Pengaruh Pendapatan UMKM Kota Surabaya dengan Metode Structural Equation Model. Syntax Literate; Jurnal Ilmiah Indonesia, 7(9), 13012-13027
Badan Pusat Statistik. (2021). “Pertumbuhan Ekonomi Kota Surabaya 2020”. Diakses dari BPS Kota Surabaya [Online] https://surabayakota.bps.go.id/pressrelease/2021/03/18/236/pertumbuhan-ekonomi-kota-surabaya-2020.html.
Harnia, M. (2019) "Pengaruh Permodalan, Jam Kerja, dan Lokasi Usaha terhadap Pendapatan Usaha Kecil dan Mikro (UKM)", Tugas Akhir Universitas Islam Negeri Ar-Raniry.
Hosmer, D.W. dan Lemeshow, S. (2000). Applied Logistic Regression. New York: John Wiley & Sons, Inc.
Khaeruddin, G.N., Nawawi, K., dan Devi, A. (2020). “Faktor-Faktor yang Mempengaruhi Pendapatan UMKM di Masa Pandemi Covid-19 (Studi: Kasus Padagang Kali Lima di Desa bantar Jaya Bogor)”, Jurnal Akrab Juara, vol. 5 (no. 4), 86-101.
Laili, Y.F., dan Setiawan, A.H. (2020). “Analisis Faktor-Faktor yang Mempengaruhi Pendapatan UMKM Sentra Batik di Kota Pekalongan,” Jurnal Universitas Diponegoro, vol. 9 (no. 4).
Setyobudi, R.F. (2016). "Analisis Model Regresi Logistik Ordinal Pengaruh Pelayananan di Fakultas Matematika dan Ilmu Pengetahuan Alam terhadap Kepuasan Mahasiswa FMIPA UNNES", Tugas Akhir Universitas Negeri Semarang.
Zakariyah. (2015). "Analsis Regresi Logistik Ordinal pada Prestasi Belajar Lulusan Mahasiswa S1 ITS Surabaya Berbasi SKEM", Tugas Akhir Institut Teknologi Sepuluh Nopember.