Application of the Random forest Method to Identify Food and Beverage Industries Experiencing Raw Material Difficulties

Penerapan Metode Random Forest untuk Mengidentifikasi Industri Makanan dan Minuman yang Mengalami Kesulitan Bahan Baku

Authors

  • Iman Jihad Fadillah Badan Pusat Statistik
  • Indah Noor Safrida Badan Pusat Statistik
  • Rima Kusumaningtyas Badan Pusat Statistik

Keywords:

food and beverage industry, missing value, random forest

Abstract

The food and beverage industry experienced a significant increase after the pandemic. However, challenges continue to hit this industry, especially for micro and small scale businesses. To overcome this problem, the right approach is needed. One of the first steps is to provide quality data as a basis for decision making and problem solving. However, statistical activities such as censuses and surveys often face obstacles in the form of missing values. One effective method for dealing with this is using the random forest method. This research aims to use a machine learning-based imputation method, namely the random forest method, to identify micro and small scale food and beverage industries that are experiencing raw material difficulties. The research results show that the random forest method provides accurate and consistent predictions in identifying food and beverage industries experiencing raw material difficulties. However, it is also necessary to consider the relatively long computing time for implementing this method.

Downloads

Download data is not yet available.

References

Arista., Namira. (2021). Pendeteksian Kecenderungan Depresi Pada Pengguna Twitter Menggunakan Support Vector Machine (SVM). Sekolah Tinggi Ilmu Statistik.

Badan Pusat Statistik (2022). Profil Industri Mikro Kecil 2020. Badan Pusat Statistik

Badan Pusat Statistik (2022). Berita Resmi Statistik Pertumbuhan Ekonomi Indonesia Triwulan IV-2021. Badan Pusat Statistik

Badan Pusat Statistik (2023). Berita Resmi Statistik Pertumbuhan Ekonomi Indonesia Triwulan IV-2022. Badan Pusat Statistik

Badan Pusat Statistik (2023). Berita Resmi Statistik Pertumbuhan Ekonomi Indonesia Triwulan I-2023. Badan Pusat Statistik

Biemer, P. P. & Lyberg, L. E. (2003). Introduction to survey quality. New Jersey:John Wiley & Sons, Inc.

Breiman, L. (2001). Random Forest. Machine Learning, 45, 5–32

Fadillah, Iman Jihad. (2019). Perbandingan Metode Hot-Deck Imputation Dan Metode K-Nearest Neighbor Imputation Dalam Mengatasi Missing Values (Penerapan Data Susenas Maret Tahun 2017). Skripsi Politeknik Statistika STIS Jakarta. 91 hlm.

Fadillah, Iman Jihad., & Muchlisoh, Siti., (2019). Perbandingan Metode Hot-Deck Imputation dan Metode KNNI dalam Mengatasi Missing Values. Prosiding Seminar Nasional Official Statistics. 2019. Politeknik Statistika STIS. Jakarta. https://doi.org/10.34123/semnasoffstat.v2019i1.101

Fadillah., Iman Jihad & Puspita, Chaterina Dwi. (2021). Application of The Sequential Hot-deck Imputation Method for Identification of Indonesian Standard Classification og Business Fields (KBLI). Prosiding Seminar Nasional Official Statistics. Politeknik Statistika STIS. https://doi.org/10.34123/icdsos.v2021i1.70

Fadillah., Iman Jihad & Lalu, Moh Arsal Fadila. (2022). Perbandingan Hot-deck, SVM, dan Random Forest dalam Mengidentifikasi Industri Mikro dan Kecil Terdampak Covid-19 Tahun 2020

Han, Jiawei., Kamber, Micheline., dan Pei, Jian. (2012). Data Mining: Concepts and Techniques Third Edition. Elsevier.

Iman, Qonita., & Wijayanto, Arie Wahyu., (2021). Klasifikasi Rumah Tangga Penerima Beras Miskin (Raskin)/Beras Sejahtera (Rastra) di Provinsi Jawa Barat Tahun 2017 dengan Metode Random Forest dan Support Vector Machine, 178-184.

Irawan, Novta Dany., Wijono., & Setyawati, Onny. (2017). Perbaikan Missing Value Menggunakan Pendekatan Korelasi Pada Metode K-Nearest Neighbor, 305-311.

Jerez, J.M., dan Molina, I., (2010). Missing dataimputation using statistical and machine learning methods in a real breast cancer problem. Artificial intelligence in medicine, 105-115.

Kaiser, J. (2014). Dealing with Missing valuess in Data. Journal of Systems Integration, 42

Kang, Hyun. (2013). The prevention and handling of the missing data. Korea: Chung-Ang Universtiy College of Medicine

Nariswari., Karina Dewi., Syafitri., Utami Dyah., & Mulyadi., Soni Yadi. (2011). Penerapan Metode Random Forest Dalam Driver Analysis (The Application of Random Forest In Driver Analysis), 35-43.

Penerapan Pada Data Survei Industri Mikro dan Kecil Tahunan 2020. Prosiding Seminar Nasional Official Statistics. Politeknik Statistika STIS. https://doi.org/10.34123/semnasoffstat.v2022i1.1235

Primajaya, A., & Sari, BS (2018). Random Forest Algorithm for Prediction of Precipitation, 27-31.

Rencana Induk Pembangunan Industri Nasional. (2015). Rencana Induk Pembangunan Industri Nasional 2015-2035. Peraturan Pemerintah Republik Indonesia Nomor 14 Tahun 2015. Presiden Republik Indonesia. Jakarta.

Sihombing, P., & Yuliati, I. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 417-426. https://doi.org/https://doi.org/10.30812/matrik.v20i2.1174

Downloads

Published

11-06-2024

How to Cite

Iman Jihad Fadillah, Indah Noor Safrida, & Rima Kusumaningtyas. (2024). Application of the Random forest Method to Identify Food and Beverage Industries Experiencing Raw Material Difficulties : Penerapan Metode Random Forest untuk Mengidentifikasi Industri Makanan dan Minuman yang Mengalami Kesulitan Bahan Baku. Indonesian Journal of Statistics and Its Applications, 8(1), 37–46. Retrieved from https://journal-stats.ipb.ac.id/index.php/ijsa/article/view/1175

Issue

Section

Articles