Spatio-temporal Clustering Analysis of Dengue Hemorrhagic Fever Cases in West Java 2016 – 2021
Analisis Penggerombolan Spasio-temporal Kasus DBD di Jawa Barat Tahun 2016 – 2021
DOI:
https://doi.org/10.29244/ijsa.v7i1p56-63Keywords:
dengue hemorrhagic fever, heatmap clustering, spatio-temporal clusteringAbstract
In 2020, WHO included dengue as a global health threat among 10 other diseases. This is also a problem in Indonesia, especially the province of West Java. Based on data from the Ministry of Health for 2022, West Java is the largest contributor to cases of Dengue Hemorrhagic Fever (DHF) in Indonesia. The spread of dengue fever is through mosquitoes, but climate also greatly influences the spread of this disease. The spread of West Java is quite wide, consisting of 27 city districts and a relatively high population density. This greatly influences the increase in the number of dengue fever cases. In this research, we will group years with the same dengue fever cases and identify groups of districts/cities in West Java with the same pattern of dengue fever cases for 2016 to 2021. The results obtained are that 2016 is the group with the highest number of cases. Meanwhile, from 27 city districts in West Java, three groups were obtained. Group 1 is the group with the highest number of cases consisting of Sukabumi City, Bandung City, Cimahi City, Depok City, Tasikmalaya City.
Downloads
References
BPS Jabar. 2023. Jumlah Penduduk Menurut Kabupaten/Kota (Jiwa). https://jabar.bps.go.id/indicator/12/133/1/jumlah-penduduk-menurut-kabupaten-kota.html
Bowers, A. J. (2019). Analyzing the longitudinal K-12 grading histories of entire cohorts of students: Grades, data driven decision making, dropping out and hierarchical cluster analysis. Practical Assessment, Research, and Evaluation, 15(1): 7.
Dinas Kesehatan. 2023. Jumlah Kasus Penyakit Demam Berdarah Dengue (DBD) Berdasarkan Kabupaten/Kota di Jawa Barat. https://opendata.jabarprov.go.id/id/dataset/jumlah-kasus-penyakit-demam-berdarah-dengue-dbd-berdasarkan-kabupatenkota-di-jawa-barat
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.
Lee, J. E., Recker, M., Bowers, A. J., & Yuan, M. (2016). Hierarchical Cluster Analysis Heatmaps and Pattern Analysis: An Approach for Visualizing Learning Management System Interaction Data. EDM, 603–604.
Mirkin, B. (2005). Clustering for data mining: a data recovery approach. Chapman and Hall/CRC.
Rahardiantoro, S., & Sakamoto, W. (2023). Spatio-temporal clustering analysis using generalized lasso with an application to reveal the spread of Covid-19 cases in Japan. Computational Statistics, 1–25.
Rinawan, F. (2015). Dampak perubahan iklim terhadap kejadian demam berdarah di Jawa-Barat. Jurnal Sistem Kesehatan, 1(1).
Utama, I. M. S., Lukman, N., Sukmawati, D. D., Alisjahbana, B., Alam, A., Murniati, D., … Laksono, I. (2019). Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLOS Neglected Tropical Diseases, 13(10): e0007785.
World Health Organization. 2021. Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
Yanti, Y., & Rahardiantoro, S. (2019). Identification of Factors Affecting Tuberculosis in West Java using Spatial Modeling. ICSA-International Conference on Statistics and Analytics 2019, 9–17.
Yanti, Y., & Rahardiantoro, S. (2023). Analysis of Regency and City Pneumonia Clusters in West Java 2020. Komputasi: Jurnal Ilmiah Ilmu Komputer Dan Matematika, 20(1): 44–50.