Missing Value Estimation Using Fuzzy C-Means in Classification of Chronic Kidney Disease Pendugaan Missing Values Menggunakan Fuzzy C - Means Pada Pengklasifikasian Penyakit Ginjal Kronik
Main Article Content
Abstract
Based on World Health Organization (WHO) the cases of death due to Chronic Kidney Disease (CKD) ranked the 10th worldwide in 2020. CKD need to be done prevent early. History data to identify individuals predisposed to CKD in this research. In this research data contains missing values, therefore using Fuzzy C - Means (FCM) method to address it. The percentage of error in clustering CKD using FCM method is 20,25% and balanced accuracy of 84,80%. The result from classification using Classification and Regression Trees (CART) shows that accuracy value of 97,50%; sensitivity of 100,00%; and specificity of 92,86%. Individual suffer from CKD if having (1) hemoglobin more than or equal 13; spesific gravity 1,020 or 1,025; serum creatinine less than 1,3; albumin 1 or 2 or 3 or 4 or 5; and sugar 0 or 2 or 3 or 4 or 5, (2) hemoglobin more than or equal 13; spesific gravity 1,020 or 1,025; and serum creatinine more than or equal 1,3, (3) hemoglobin more than or equal 13 and spesific gravity 1,005 or 1,010 or 1,015, (4) hemoglobin less than 13 and red blood cell count less than 5,5.
Downloads
Article Details
References
Aristiawati K, Siswantining T, Sarwinda D, Soemartojo SM. 2019. Missing values imputation based on fuzzy c-means algorithm for classification of Chronic Obstructive Pulmonary Disease (COPD). AIP Conf Proc. 2192(1):0600031-060007.
Chen JJ, Tsai CA, Moon H, Ahn H, Young JJ, Chen CH. 2006. Decision threshold adjustment in class prediction. SAR and QSAR in Environmental Research. 17(3):337–352.
Dewi IGAPA. 2010. Hubungan antara quick of blood (Qb) dengan adekuasi hemodialisis pada pasien yang mejalani terapi hemodialisis di ruang HD BRSU daerah Tabanan Bali [tesis]. Depok: Universitas Indonesiaa. 2nd ed. Florida (US): CRC Pr.
Dua D and Graff C. 2019. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, California: University of California, School of Information and Computer Science.
Hair JF, Black WC, Babin BJ, Anderson RE . 2010. Multivariate data analysis. 7th Edition. New York: Pearson
Ibarra MMA, Villuendas-Rey Y, Lytras MD, Yáñez-Márquez C, Salgado-Ramírez JC. 2021. Classification of diseases using machine learning algorithms: a comparative study. Mathematics. 9(15). doi:10.3390/math9151817.
[KEMENKES RI] Kementerian Kesehatan Republik Indonesia. 2017. Situasi penyakit ginjal kronis. Jakarta: Pusat Data dan Informasi. hal. 1-12.
Rianto R. 2016. Rancangan bangun aplikasi pendeteksi penyakit ginjal kronis dengan menggunakan algoritma C4.5 [skripsi]. Tangerang: Universitas Multimedia Nusantara.
Salleh MNM, Samat NA. 2017. FCMPSO: an imputation for missing data features in heart disease classification. IOP Conference Series: Materials Science and Engineering. 226.
Sartono B, Syafitri UD. 2010. Metode pohon gabungan: solusi pilihan untuk mengatasi kelemahan pohon regresi dan klasifikasi tunggal. Forum Statistika dan Komputasi. 15(1):1-7.
Shofa UA. 2022. Perbandingan CART dan SMOTE CART dalam mengklasifikasikan kebutuhan KB tidak terpenuhi di Indonesia [skripsi]. Bogor: Institut Pertanian Bogor.
[WHO] World Health Organization. 2020. The top 10 causes of death [Online]. Tersedia: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (Diakses: 14 Juni 2021).