PENINGKATAN AKURASI KLASIFIKASI INTERAKSI FARMAKODINAMIK OBAT BERBASIS SELEKSI PASANGAN OBAT TAKBERINTERAKSI

Authors

  • Hilma Mutiara Winata Department of Statistics, IPB University, Indonesia
  • Farit Mochamad Afendi Department of Statistics, IPB University, Indonesia
  • Anwar Fitrianto Department of Statistics, IPB University, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v3i3.327

Keywords:

DP-Clus, golden standard negative, pharmacodynamics drug-drug interaction

Abstract

Identifying the pharmacodynamics drug-drug interaction (PD DDI) is needed since it can cause side effects to patients. There are two measurements of drug interaction performance, namely the golden standard positive (GSP) which is the drug pairs that interact pharmacodynamics and golden standard negative (GSN), which is a drug pairs that do not interact. The selection of GSN in the previous which studies were only selected randomly from a list of drug pairs that do not interact. The random selection is feared to contain drug pairs that actually interact but have not been recorded. Therefore, in this study the determination of GSN was carried out by, first, grouping drug pairs included in the GSP using the DP-Clus algorithm with certain values of density and cluster properties. Then the drugs in different group would be paired and only the drug pairs in the GSN list are selected. It was found that our new proposed classification method increases the AUC value compared to the results obtained by random selection of GSN.

Downloads

Download data is not yet available.

References

Altaf-Ul-Amin, M., Tsuji, H., Kurokawa, K., Ashahi, H., Shinbo, Y., & Kanaya, S. (2007). A density-periphery based graph clustering software developed for detection of protein complexes in interaction networks. 2007 International Conference on Information and Communication Technology, 37–42. IEEE.

Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L. J., & Bork, P. (2008). Drug target identification using side-effect similarity. Science, 321(5886): 263–266.

Dong, J., Cao, D.-S., Miao, H.-Y., Liu, S., Deng, B.-C., Yun, Y.-H., … Chen, A. F. (2015). ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation. Journal of Cheminformatics, 7(1): 60. https://doi.org/10.1186/s13321-015-0109-z.

Evelyn, T. (2017). Berbagai Penyakit Akibat Gangguan Metabolisme. Retrieved from https://health.uzone.id/berbagai-penyakit-akibat-gangguan-metabolisme.

Fradgley, S. (2003). Interaksi Obat dalam Farmasi Klinis (Clinical Pharmacy) Menuju Pengobatan Rasional dan Penghargaan Pilihan Pasien (Aslam M, Tan CK, Prayitno A, Ed). Jakarta (ID): PT Elex Media Komputindo Kelompok Gramedia.

Gorunescu, F. (2011). Data Mining: Concepts, models and techniques (Vol. 12). German: Springer Science & Business Media.

Huang, J., Niu, C., Green, C. D., Yang, L., Mei, H., & Han, J.-D. J. (2013). Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLoS Computational Biology, 9(3): e1002998.

Rahmawati, F., Handayani, R., & Gosal, V. (2006). Kajian retrospektif interaksi obat di Rumah Sakit Pendidikan Dr. Sardjito Yogyakarta. Majalah Farmasi Indonesia, 17(4): 177 – 183.

Todeschini, R., Consonni, V., Xiang, H., Holliday, J., Buscema, M., & Willett, P. (2012). Similarity coefficients for binary chemoinformatics data: Overview and extended comparison using simulated and real data sets. Journal of Chemical Information and Modeling, 52(11): 2884–2901.

Downloads

Published

31-10-2019

How to Cite

Winata, H. M., Afendi, F. M., & Fitrianto, A. (2019). PENINGKATAN AKURASI KLASIFIKASI INTERAKSI FARMAKODINAMIK OBAT BERBASIS SELEKSI PASANGAN OBAT TAKBERINTERAKSI. Indonesian Journal of Statistics and Its Applications, 3(3), 247–259. https://doi.org/10.29244/ijsa.v3i3.327

Issue

Section

Articles

Most read articles by the same author(s)