Analyzing Low Birthweight in Java Based on Logistic Regression Model for Matched Pair Data

Analisis Berat Badan Lahir Rendah di Pulau Jawa Berdasarkan Model Regresi Logistik untuk Data Berpadanan

Authors

  • Christiana Anggraeni Putri Department of Statistics, IPB University, Indonesia
  • Rini Irfani Department of Statistics, IPB University, Indonesia
  • Khairil Anwar Notodiputro Department of Statistics, IPB University, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v7i2p75-85

Keywords:

case-control study, conditional logistic regression, confounding variable, low birthweight

Abstract

Low birthweight is one of the leading causes of neonatal death. Generally, the study of low birth weight is done by modeling logistic regression without considering the influence of confounding variables that can deviate the actual relationship between the explanatory variables and the response. This paper aims to identify low birth weight determinants in Java based on the logistic regression model for conditional study design, in which the analysis is based on matching the education level of the mother with one control. The results of the analysis showed that matched logistic regression can be used to correct bias due to the influence of a confounding variable. It reveals that based on the results of modeling, the frequency of pregnancy examinations and the parity of children are significantly affect the risk of low birth weight in Java Island.

Downloads

Download data is not yet available.

References

Kementerian Kesehatan. 2014. Peraturan Menteri Kesehatan No. 97 Tahun 2014 tentang Pelayanan Kesehatan Masa Sebelum Hamil, Masa Hamil, Persalinan, dan Masa Sesudah Melahirkan, Penyelenggaraan Pelayanan Kontrasepsi, serta Pelayanan Kesehatan Seksual. Jakarta (ID): Kementerian Kesehatan.

Kementerian Kesehatan. 2018. Buletin Jendela Data dan Informasi Kesehatan Semester-1. Jakarta (ID): Kementrian Kesehatan

Kosim MS, Yunanto A, Dewi R, Surosa GI, Usman A. 2012. Buku Ajar Neonatologi Edisi ke-1. Jakarta (ID): IDAI

Puspitasari R. 2014. Hubungan Tingkat Pendi¬dikan dan Pekerjaan Ibu dengan Kejadian Bayi Berat Lahir Rendah di RSU PKU Mu¬hammadiyah Bantul [Skripsi]. Yogyakarta (ID): Sekolah Tinggi Ilmu Kesehatan ‘Aisyiyah Yogyakarta.

Utomo W. 2008. Perbandingan Analisis Regresi Logistik dengan Analisis Propensity Score Matching pada Studi Kasus Imunisasi Bayi. Jurnal Kesehatan Masyarakat Nasional 4(3):282-287

Wahabi, Hayfaa A. 2013. Effects of a secondhand smoke on the birth weight of term infants and the demographic profile of Saudi exposed women. BMC Public Health 13:341

Wati, L.,K. (2012). Hubungan antara Preeklampsi/eklampsi dengan Kejadian Berat Badan Lahir Rendah (BBLR) di RSUD Dokter Soedarso Pontianak tahun 2012. Pontianak (ID): Universitas Tanjungpura

Downloads

Published

31-12-2023

How to Cite

Putri, C. A., Irfani, R., & Notodiputro, K. A. (2023). Analyzing Low Birthweight in Java Based on Logistic Regression Model for Matched Pair Data: Analisis Berat Badan Lahir Rendah di Pulau Jawa Berdasarkan Model Regresi Logistik untuk Data Berpadanan. Indonesian Journal of Statistics and Its Applications, 7(2), 75–85. https://doi.org/10.29244/ijsa.v7i2p75-85

Issue

Section

Articles

Most read articles by the same author(s)