Price Prediction Model for Red and Curly Red Chilies using Long Short Term Memory Method

Authors

  • Rizky Abdullah Falah Department of Computer Science, IPB University, Indonesia
  • Meuthia Rachmaniah Department of Computer Science, IPB University, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v6i1p143-160

Keywords:

chili, demand and supply, long short term memory, price predicition, root mean square error

Abstract

The price data of the Strategic Food Price Information Center from May 2018 to May 2021 in 34 provinces show a fluctuated trend. Our study aimed to build predictive modeling of red chili and curly chili prices in West Java province using the Long Short Term Memory method. The red chili and curly chili prices prediction model in our study was successfully constructed and is considered very representative of predicting prices in traditional and modern markets in West Java Province. The best parameter model for red chili in the traditional market is a neuron value of 64 and a learning rate of 0.0005, and in the modern market, there are neuron values of 48 and a learning rate of 0,005. For curly chili, the best parameter model in traditional markets is a neuron value of 48 and a learning rate of 0.00075, and in the modern market, there are neuron values of 32 and a learning rate of 0,001. All models use the number of the epoch 100. The best prediction model for the price of red chili and curly red chili in traditional markets obtained the smallest root mean square error values on the test data of 2.57% and 2.07%, respectively. Meanwhile, the best price prediction model in the modern market obtained the smallest root mean square error values on the test data of 2.11% and 2.17%, respectively. Based on the root mean square error value obtained, the model is better than the other research method and shows that the variation in the value produced by a model is close to the variation in the actual value.

Downloads

Download data is not yet available.

References

Achjari D. 2000. Potensi Manfaat dan Problem di E-Commerce. Jurnal Ekonomi dan Bisnis Indonesia. 15(3): 388-395.

Adiatmaja PB, Setiawan BD, Wihandika RC. 2019. Peramalan Harga Cabai Merah Besar Wilayah Jawa Timur Menggunakan Metode Extreme Learning Machine. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 3(6): 5444-5449.

Ambarwari A, Adrian QJ, Hendriyeni Y. 2020. Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). 4(1): 117-122.

Anwarudin MJ, Sayekti AL, Marendra AK, Hilman Y. 2015. Dinamika Produksi dan Volatilitas Harga Cabai: Antisipasi Strategi dan Kebijakan Pengembangan. Jurnal Pengembangan Inovasi Pertanian. 8(1):33-42.

[BI] Bank Indonesia. 2020. Analisis Inflasi Desember 2020 Tim Pengendali Inflasi Pusat (TPIP) [internet]. [diunduh 2020 Desember 25]. Tersedia pada: https://www.bi.go.id/id/publikasi/laporan/Documents/Analisis_Inflasi_Desember_2020.pdf.

[BPS] Badan Pusat Statistik. 2020. Distribusi Perdagangan Komoditas Cabai Merah di Indonesia 2020. Jakarta (ID): BPS RI.

Chai T, Draxler RR. 2014. Root mean square error (RMSE) or mean absolute error (MAE) arguments againts avoiding RMSE in the literature. Journal of Geoscience, Engineering, Environment, and Technology (JGEET). 7(1):1247-1250.

Erviana V. 2019. Analisis Transmisi Harga Cabai Merah Besar di Provinsi Jawa Barat [tesis]. Bogor (ID): Institut Pertanian Bogor.

Fitzsimmons JA, Fitzsimmons MJ. 2010. Service Management: Operations, Strategy, Information Technology. New York (US): McGraw-Hill.

Irawan B. 2007. Fluktuasi Harga, Transmisi Harga, dan Marjin Pemasaran Sayuran dan Buah. Analisis Kebijakan Pertanian. 5(4): 358-373.

Jauhari D, Himawan A, Dewi C. 2016. Prediksi Distribusi Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation di PDAM Kota Malang. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK). 3(2): 83-87

Kalchbrenner N, Danihelka I, Graves A. 2016. Grid Long Short-Term Memory. arXiv.org:1507.01526.

Karlic B, Olgac AV. 2016. Performance Analysis of Various Activation Functions on Generalized MLP Architectures of Neural Network. International Journal of Artificial Intelligent and Expert System (IJAE). 1(4):112.

Liping Y, Yuntao P, Yishan W. 2009. Research on Data Normalization methods in Multi-attribute Evaluation. DOI: 10.1109/CISE.2009.5362721.

Olah C. 2015. Understanding LSTM Networks. [Internet]. [diakses 2020 Juni 10]. Tersedia pada: http://colah.github.io/posts/2015-08-UnderstandingLSTMs.

Rachmaniah, M., Krismanti, M.M. and Darissalam, M.I., 2020, September. Tokocabai Marketplace Application based on Web Using Extreme Programming Method. In 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA) (pp. 1-7). IEEE Xplore.

Rachmaniah, M., Suroso, A.I., Syukur, M. and Hermadi, I., 2021. Strategic Food Risks–Chili’s Agrosystem Perspective. Jurnal Manajemen & Agribisnis, 18(1), pp.19-19.

Sen S, Sugiarto D, Rochman A. 2020. Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras. Jurnal ULTIMATICS. 12(1): 39-40.

Sepri D, Fauzi A, Wandira R, Riza OS, Wahyuni YF, Hutagaol H. 2020. Prediksi Harga Cabai Merah Menggunakan Support Vector Regression. Computer Based Information System Journal. 2(8): 1-5.

Shiddiq MI. 2020. Model Prediksi Temporal Polutan CO dan CO2 Menggunakan Long Short Term Memory [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Sugiarto YH, Nangameka Y. 2013. Faktor-Faktor yang Memengaruhi Naik – Turunnya Harga Cabai Besar Menurut Pendapat Petani di Kabupaten Situbondo (Studi Kasus di Desa Arjasa, Kec. Arjasa, Kab. Situbondo). AGRIBIOS. 1(11):71-86.

Wang X, Guo P, Huang X. 2011. A review of wind power forecasting models. Energy Procedia. 12:770-778.

Wulandari H, Kurnia A, Sumantri B, Kusumaningrum D, Waryanto B. 2017. Penerapan Analisis Regresi Spline untuk Menduga Harga Cabai di Jakarta. Indonesian Journal of Statistics and Its Applications. 1(1): 1-12.

Yusniyanti E dan Kurniati. 2017. Analisis Puncak Banjir dengan Metode MAF (Studi Kasus Sungai Krueng Keureuto). Jurnal Universitas Negeri Medan (UNIMED). 5(1): 7 -12.

Zahara S, Sugianto, Ilmiddafiq MB. 2019. Prediksi Indeks Harga Konsumen Menggunakan Long Short Term Memory (LSTM) Berbasis Cloud Computing. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). 3(3): 357-363.

Zhao Z, Chen W, Wu X, Chen PCY, Liu J. 2017. LSTM network: a deep learning approach for short-term traffic forecast. IET Image Processing. 11(1):68-75

Zaytar MA, Amrani CE. 2016. Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks. International Journal of Computer Applications. 143(11): 7-11.

Downloads

Published

31-05-2022

How to Cite

Falah, R. A. ., & Rachmaniah, M. (2022). Price Prediction Model for Red and Curly Red Chilies using Long Short Term Memory Method. Indonesian Journal of Statistics and Its Applications, 6(1), 143–160. https://doi.org/10.29244/ijsa.v6i1p143-160

Issue

Section

Articles