Implementation of Fuzzy C-Means Algorithm for Clustering Provinces in Indonesia Based on Micro and Small Industry Ratio in Village Areas

Authors

  • Frandito Rahmanesta Universitas Negeri Padang
  • Zamahsary Martha Universitas Negeri Padang
  • Dodi Vionanda Universitas Negeri Padang
  • Zilrahmi Zilrahmi

DOI:

https://doi.org/10.29244/ijsa.v8i2p178-190

Keywords:

Cluster Analysis, Fuzzy C-Means, Micro and Small Industries

Abstract

Post-economic crisis, the micro and small industries contribute the most labor compared to other industries. Regional development sourced from small micro industries is a strategic force in developing a country because the development of small micro industries leads to realizing equitable welfare to reduce income inequality. Development in village areas is an important factor for regional development, reducing inequality between regions, and alleviating poverty. However, based on the 2018 PODES survey, there are regional imbalances in Indonesia in the small micro industry which is centralized on Java Island. Therefore, clustering and characteristics of the province were carried out based on the PODES survey of the small micro industry sector. This research uses the Fuzzy C-Means algorithm to cluster 34 provinces in Indonesia based on the ratio of small micro industries in village areas in 2021, to see how the development of small micro industries in village areas in each province in Indonesia. Fuzzy C-Means is one of the data clustering techniques that uses a fuzzy clustering model, where cluster formation is based on a membership degree value that varies between 0 and 1. The Fuzzy C-Means algorithm generates 4 clusters, cluster 1 and 2 represents provinces with high and very high micro and small industry development in village areas and cluster 3 and 4 represents provinces with medium and low micro and small industry development in village areas. The Fuzzy C-Means algorithm produces a good cluster structure with a silhouette coefficient value of 0,6406.

Downloads

Download data is not yet available.

Author Biographies

Frandito Rahmanesta, Universitas Negeri Padang

 Department of Statistics, Universitas Negeri Padang, Indonesia

Zamahsary Martha, Universitas Negeri Padang

Department of Statistics, Universitas Negeri Padang, Indonesia

Dodi Vionanda, Universitas Negeri Padang

Department of Statistics, Universitas Negeri Padang, Indonesia

Zilrahmi Zilrahmi

Department of Statistics, Universitas Negeri Padang, Indonesia

References

Badan Pusat Statistik. (2018). Statistik Potensi Desa 2018. Jakarta: Badan Pusat Statistik.

Badan Pusat Statistik. (2020). Profil Industri Mikro dan Kecil 2019. Jakarta: Badan Pusat Statistik.

Cebeci, Zeynel, & Figen Yildiz. (2015). “Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures”. Journal of Agricultural Informatics 6(3):13–23. doi: 10.17700/jai.2015.6.3.196.

Ghozali, I. (2016). Aplikasi Analisis Multivariate dengan Program IBM SPSS 25 Edisi 9. Semarang: Badan Penerbit Universitas Diponegoro.

Hair JR, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2013). Multivariate Data Analysis.7th ed. Edinburgh: Pearson.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On Clustering Validation Techniques. Journal of Intelligent Information Systems, 17(3), 107–145. https://doi.org/10.1023/A:1012801612483.

Handoyo, R., M, R. R. & Nasution, S. M., (2014). Perbandingan Metode Clustering menggunakan metode single linkage dan k-means pada pengelompokan dokumen. Volume 15, pp. 73-82.

Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis Sixth Edition. New Jersey: Pearson Education,Inc.

Kaufman, L. & Rousseeuw, P.J. (2005) Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken: John Wiley.

Kusumadewi, S & Purnomo, P. (2004). Aplikasi Logika Fuzzy Untuk Mendukung Keputusan. Yogyakarta: Graha Ilmu.

Li MJ, Ng MK, Cheung Y, Huang JZ. (2008). Agglomerative Fuzzy K-means Clustering Algorithm with Selection of Number of Clusters. IEEE Transactions on Knowledge and Data Engineering, 20.

Muningsih, E. (2017). Optimasi jumlah cluster k-means dengan metode elbow untuk pemetaan pelanggan. Pros. Semin. Nas. ELINVO, 105-114.

Nishom M, (2019), Perbandingan Akurasi Euclidean Distance, Minkowski Distance dan Manhattan Distance Pada Algoritma K-Means Clustering Berbasis Chi-Square. Jurnal Informatika : Jurnal Pengembangan IT, 4(1), 20-24. doi: 10.30591/jpit.v4i1.1253.

Pramana, S., Yuniarto, B., Mariyah, S., Santoso, I., & Nooraeni, R. (2018). Data Mining dengan R : Konsep serta Implementasi. Bogor: In Media.

Soleh, A. (2017). Strategi pengembangan potensi desa. Jurnal Sungkai, 5(1), 32-52.

Talakua, M. W., Leleury, Z. A., & Taluta, A. W. (2017). Analisis cluster dengan menggunakan metode k-means untuk pengelompokkan Kabupaten/Kota di provinsi maluku berdasarkan indikator indeks pembangunan manusia tahun 2014. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 11(2), 119-128.

Downloads

Published

31-12-2024

How to Cite

Rahmanesta, F., Martha, Z., Vionanda, D., & Zilrahmi, Z. (2024). Implementation of Fuzzy C-Means Algorithm for Clustering Provinces in Indonesia Based on Micro and Small Industry Ratio in Village Areas. Indonesian Journal of Statistics and Its Applications, 8(2), 178–190. https://doi.org/10.29244/ijsa.v8i2p178-190

Issue

Section

Articles