Application of Singular Spectrum Analysis in Predicting Rupiah Exchange Yuan

Main Article Content

Muhammad Hendrawan
Zilrahmi Zilrahmi
Yenni Kurniawati
Dina Fitria

Abstract

The exchange rate between two countries is the price of the currency used by residents of these countries to trade with each other, the relationship between the Rupiah exchange rate and the Yuan is one of the important aspects in the dynamics of international trade. Therefore, forecasting the exchange rate is important as an effort to predict the exchange rate of Rupiah against Yuan in the future. The method used for forecasting is Singular Spectrum Analysis, namely decomposition and reconstruction. The accuracy of the resulting forecast is measured using the Mean Absolute Percentage Error criterion. The exploration results obtained are forecasting accuracy based on the Mean Absolute Percentage Error value of 2.15% with a window length of 23 which identifies that the forecasting results are accurate and effective. Forecasting is said to be accurate if the Mean Absolute Percentage Error value is lower than 10% and close to 10%

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Hendrawan M, Zilrahmi Z, Kurniawati Y, Fitria D. Application of Singular Spectrum Analysis in Predicting Rupiah Exchange Yuan. IJSA [Internet]. 2025 Jun. 24 [cited 2025 Jul. 12];9(1):75-8. Available from: https://journal-stats.ipb.ac.id/index.php/ijsa/article/view/1270
Section
Articles

References

Fitri, F., Rahmat, R., & Pengestuti, A. D. (2020, May). Forecasting of rainfall in sumatera barat: singular spectrum analysis (SSA) application. In Journal of Physics: Conference Series (Vol. 1554, No. 1, p. 012047). IOP Publishing.

Golyandina, N., & Zhigljavsky, S. A. (2013). Singular Spectrum Analysis for Time Series.-Springer Heidelberg New York Dordrecht London.

Golyandina, N., V. Nekrutkin, and A. Zhigljavsky. 2001. Analysis of Time Séries Structure: SSA and Related Thechniques, Chapman & hall.

Hassani, H., Mahmoudvand, R. 2018. Singular Spectrum Analysis Using R. Palgrave Macmillan.

Ichsan, S. , Suhadak, & Sulasmiyati, S. (2016). Pengaruh Pergerakan Nilai Tukar Yuan Terhadap Ekspor Dan Impor Indonesia (Studi Pada Bank Indonesia Periode 2012- 2014). Jurnal Administrasi Bisnis, 35(2), 94–103.

Isnawati, Salafyah. 2018. “Model Hibrida Singular Spectrum Analysis dan Automatic ARIMA untuk Peramalan Air Terjual di PDAM Giri Tirta Sari Kabupaten Wonogiri Jawa Tengah”, Tugas Akhir,165 Hal., Institut Teknologi Sepuluh November, Surabaya, Indonesia, Januari 2018

Mankiw, N. Gregory. (2007). Makro Ekonomi, Edisi Keenam. Jakarta: Erlangga. Muta’ali, Hadi Nur."Kepentingan Indonesia Malaysia Thailand Terhadap Kerjasama Local Currency Settlement Framework (Lcs)." Ejurnal Ilmu Hubungan Internasional 8.1 (2018).

Mishkin, F.S. 2011. Ekonomi Uang, Perbankan, dan Pasar Keuangan 8th ed.Jakarta: Salemba Empat.

Rocco S, C. M. (2013). Singular spectrum analysis and forecasting of failure time series. Reliability Engineering and System Safety, 114, 126-136

Hassani. Hossein dan Zigljavsky A. 2009. Singular Spectrum Analysis: Methodology and Aplication to Economic Data. Springer Science+Bussines Media, LLC.

Myung, No Kang. 2009. Singular Spectrum Analysis. Thesis. University of California.

Zhigljavsky, A. (2011). Singular Spectrum Analysis for Time Series. In International Encyclopedia of Statistical

Ischak, R. (2018). Peramalan Rata-Rata Harga Beras di Tingkat Penggilingan Menggunakan ModelSingularSpectrum Analysis (SSA). 57–64.