Sentiment Classification on the 2024 Indonesian Presidential Candidate Dataset Using Deep Learning Approaches
DOI:
https://doi.org/10.29244/ijsa.v8i2p83-94Keywords:
Deep Learning, GRU, Indonesian Presidential Election, LSTM, Sentiment AnalysisAbstract
This study aims to compare the performance of three deep learning models (LSTM, BiLSTM, and GRU) in the task of sentiment classification for the 2024 Indonesian Presidential Candidate dataset, focusing specifically on the case of Prabowo Subianto. The dataset comprises social media X posts sourced from kaggle, and the analysis investigates the effectiveness of different variants of recurrent neural network architectures in identifying public sentiment. The models were evaluated on accuracy and F1 score. The results demonstrate that BiLSTM outperformed both LSTM and GRU models in all metrics, achieving a testing accuracy of 80.70% and an F1 score of 86.86%, compared to LSTM and GRU which both achieved a testing accuracy of 72.56% and an F1 score of approximately 84%. The higher performance of BiLSTM is attributed to its ability to capture bidirectional context within the text, thereby understanding complex sentiment patterns more effectively. LSTM and GRU models displayed similar performance, therefore BiLSTM is the best model for this dataset. These results indicate that BiLSTM is especially well-suited for analyzing public sentiment towards political figures like Prabowo Subianto, offering significant insights into public discussions surrounding the 2024 Indonesian Presidential Election. This study recommends exploring transformer-based models like BERT or GPT variants to enhance sentiment classification accuracy in this domain.
Downloads
References
Abiola, O., Abayomi-Alli, A., Tale, O. A., Misra, S., & Abayomi-Alli, O. (2023). Sentiment analysis of COVID-19 tweets from selected hashtags in Nigeria using VADER and Text Blob analyser. Journal of Electrical Systems and Information Technology, 10(1), 5. https://doi.org/10.1186/s43067-023-00070-9
Adams, E. J., Ofordi, J., Abdulmumini, A., & Isah, J. M. (n.d.). The role social media play in generating political awareness, discussion, and strategies for better elections.
Ansari, M. Z., Aziz, M. B., Siddiqui, M. O., Mehra, H., & Singh, K. P. (2020). Analysis of Political Sentiment Orientations on Twitter. Procedia Computer Science, 167, 1821–1828. https://doi.org/10.1016/j.procs.2020.03.201
Bonetti, A., Martínez-Sober, M., Torres, J. C., Vega, J. M., Pellerin, S., & Vila-Francés, J. (2023). Comparison between Machine Learning and Deep Learning Approaches for the Detection of Toxic Comments on Social Networks. Applied Sciences, 13(10), 6038. https://doi.org/10.3390/app13106038
Bordoloi, M., & Biswas, S. K. (2023). Sentiment analysis: A survey on design frameworks, applications, and future scopes. Artificial Intelligence Review, 56(11), 12505–12560. https://doi.org/10.1007/s10462-023-10442-2
Cho, K., Merrienboer, B. van, Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation (arXiv:1406.1078). arXiv. https://doi.org/10.48550/arXiv.1406.1078
Dumlao, J. (2024). Indonesia Presidential Candidate’s Dataset, 2024 [Dataset]. https://www.kaggle.com/datasets/jocelyndumlao/indonesia-presidential-candidates-dataset-2024
Firdaus, A. A., Saputro, J. S., Anwar, M., Adriyanto, F., Maghfiroh, H., Ma’arif, A., Syuhada, F., & Hidayat, R. (n.d.). Application of Sentiment Analysis as an Innovative Approach to Policy Making: A Review.
Giustino, J. K., & Santosa, Y. P. (2024). Toxic Comment Classification Comparison Between LSTM, BILSTM, GRU, and BIGRU. Proxies: Jurnal Informatika, 7(2), 115–127. https://doi.org/10.24167/proxies.v7i2.12471
Han, L., Pan, W., & Zhang, H. (2021). Microblog Rumor Detection Based on Bert-GRU. In Q. Liang, W. Wang, J. Mu, X. Liu, Z. Na, & X. Cai (Eds.), Artificial Intelligence in China (Vol. 653, pp. 450–457). Springer Singapore. https://doi.org/10.1007/978-981-15-8599-9_52
Hananto, A. L., Nardilasari, A. P., Fauzi, A., Hananto, A., Priyatna, B., & Rahman, Y. (n.d.). Best Algorithm in Sentiment Analysis of Presidential Election in Indonesia on Twitter. International Journal of Intelligent Systems and Applications in Engineering.
Hartmann, J., Heitmann, M., Siebert, C., & Schamp, C. (2023). More than a Feeling: Accuracy and Application of Sentiment Analysis. International Journal of Research in Marketing, 40(1), 75–87. https://doi.org/10.1016/j.ijresmar.2022.05.005
Islam, Md. S., Kabir, M. N., Ghani, N. A., Zamli, K. Z., Zulkifli, N. S. A., Rahman, Md. M., & Moni, M. A. (2024). Challenges and future in deep learning for sentiment analysis: A comprehensive review and a proposed novel hybrid approach. Artificial Intelligence Review, 57(3), 62. https://doi.org/10.1007/s10462-023-10651-9
Ma’aly, A. N., Pramesti, D., Fathurahman, A. D., & Fakhrurroja, H. (2024). Exploring Sentiment Analysis for the Indonesian Presidential Election Through Online Reviews Using Multi-Label Classification with a Deep Learning Algorithm. Information, 15(11), 705. https://doi.org/10.3390/info15110705
Ragheb, W., Azé, J., Bringay, S., & Servajean, M. (2019). Attention-based Modeling for Emotion Detection and Classification in Textual Conversations (arXiv:1906.07020). arXiv. https://doi.org/10.48550/arXiv.1906.07020
Rolangon, A., Weku, A., & Sandag, G. A. (2023). Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi Covid-19. TeIKa, 13(01), 31–40. https://doi.org/10.36342/teika.v13i01.3063
Sahoo, C., Wankhade, M., & Singh, B. K. (2023). Sentiment analysis using deep learning techniques: A comprehensive review. International Journal of Multimedia Information Retrieval, 12(2), 41. https://doi.org/10.1007/s13735-023-00308-2
Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681. https://doi.org/10.1109/78.650093
Singh, S., & Kumar, P. (2023). Sentiment Analysis of Twitter Data: A Review. 2023 2nd International Conference for Innovation in Technology (INOCON), 1–7. https://doi.org/10.1109/INOCON57975.2023.10100998
Suhaeni, C., & Yong, H.-S. (2023). Mitigating Class Imbalance in Sentiment Analysis through GPT-3-Generated Synthetic Sentences. Applied Sciences, 13(17), 9766. https://doi.org/10.3390/app13179766
Suhaeni, C., & Yong, H.-S. (2024). Enhancing Imbalanced Sentiment Analysis: A GPT-3-Based Sentence-by-Sentence Generation Approach. Applied Sciences, 14(2), 622. https://doi.org/10.3390/app14020622
Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. Applied Sciences, 13(7), 4550. https://doi.org/10.3390/app13074550
Terven, J., Cordova-Esparza, D. M., Ramirez-Pedraza, A., Chavez-Urbiola, E. A., & Romero-Gonzalez, J. A. (2024). Loss Functions and Metrics in Deep Learning (arXiv:2307.02694). arXiv. https://doi.org/10.48550/arXiv.2307.02694
Tumasjan, A., Sprenger, T., Sandner, P., & Welpe, I. (2010). Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. Proceedings of the International AAAI Conference on Web and Social Media, 4(1), 178–185. https://doi.org/10.1609/icwsm.v4i1.14009