Performance Evaluation of ARDL Model Stacked with Boosted Ridge Regression on Time Series Data with Multicollinearity Evaluasi Kinerja Estimasi Model ARDL stacked with Boosted Ridge Regression pada Data Deret Waktu dengan Multikolinearitas

Main Article Content

Amir Abduljabbar Dalimunthe
Agus Mohamad Soleh
Farit Mochamad Afendi

Abstract

Time series data plays a vital role in financial and economic study. Two commonly applied models for such data are Vector Autoregression (VAR) and Autoregressive Distributed Lags (ARDL). Nonetheless, interdependence among explanatory variables often leads to multicollinearity, posing challenges for model reliability. This study investigates the effectiveness of the ARDL model integrated with boosted ridge regression as a method to mitigate multicollinearity. Due to limitations in available empirical data, simulation data will be generated to support the analysis. The research consists of two stages: synthetic data generation and analysis on simulated data. Results suggest that ARDL performs well under various multicollinearity conditions, particularly when the training set is sufficiently large and model structure is correctly specified. For smaller training sets, the ARDL Ridge variant demonstrates improved predictive performance.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Dalimunthe AA, Soleh AM, Afendi FM. Performance Evaluation of ARDL Model Stacked with Boosted Ridge Regression on Time Series Data with Multicollinearity: Evaluasi Kinerja Estimasi Model ARDL stacked with Boosted Ridge Regression pada Data Deret Waktu dengan Multikolinearitas. IJSA [Internet]. 2025 Jun. 24 [cited 2025 Jul. 12];9(1):136-44. Available from: https://journal-stats.ipb.ac.id/index.php/ijsa/article/view/1296
Section
Articles

References

Abdulkheir A.Y. (2013). An Analytical Study of the Demand for Money in Saudi Arabia. International Journal of Economics and Finance, 5(4):31-38. doi:10.5539/ijef.v5n4p31.

Achsani N.A. (2010). Stability of Money Demand in an Emerging Market Economy: An Error Correction and ARDL Model for Indonesia. Research Journal of International Studies, 13: 54-62.

Alena E., Achsani N.A., Andati T. (2017). Dampak Guncangan Variabel Makroekonomi terhadap Beta Indeks Sektoral di BEI. Jurnal Aplikasi Bisnis dan Manajemen.

Dritsakis N. 2011. Demand for Money in Hungary: An ARDL Approach. Review of Economics and Finance, 1:1–16.

Friedman J., Hastie T., Tibshirani R., Narasimhan B., Tay K., Simon N., Yang J. (2021). glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models [R Package]. CRAN.

Hastie T., Friedman J., Tibshirani R. (2001). The Elements of Statistical Learning. Springer.

Lang M., Becker M., Koers L. (2019). mlr3measures: Performance Measures for mlr3 [R Package]. CRAN.

Lavery M.R., Acharya P., Sivo S.A., Xu L. (2017). Number of predictors and multicollinearity: What are their effects on error and bias in regression? Communications in Statistics – Simulation and Computation, 48(1):27–38. doi:10.1080/03610918.2017.1371750.

Lutkepohl H. (2005). New Introduction to Multiple Time Series Analysis. Springer.

Mall S. (2013). Estimating a Function of Real Demand for Money in Pakistan: An Application of Bounds Testing Approach to Cointegration. International Journal of Computer Applications, 79(5):32–50. doi:10.5120/13740-1548.

Ooi H. (2017). glmnetUtils: Utilities for Glmnet [R Package]. CRAN.

Pesaran M.H., Shin Y., Smith R.J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics. 16(3):289–326. doi:10.1002/jae.616.

Pfaff B. (2008). VAR, SVAR and SVEC Models: Implementation Within R Package vars. Journal of Statistical Software. 27(4). doi:10.18637/jss.v027.i04.

Prabowo E., Harianto, Juanda B., Indrawan D. (2022). The Economic Price of Liquid Petroleum Gas, Poverty and Subsidy Removal Compensation Scenario in Indonesia. International Journal of Energy Economics and Policy. 12(5):169–177. doi:10.32479/ijeep.13356.

Qisthina G.F., Achsani N.A., Novianti T. (2022). Determinants of Indonesian Government Bond Yields. Jurnal Aplikasi Bisnis dan Manajemen.

Ripley B. (2022). MASS: Support functions and datasets for Venables and Ripley’s MASS [R package]. CRAN.

Rishad A., Sharma A., Gupta S. (2018). Demand for Money in India: An ARDL Approach. International Journal of Economics and Financial Research. hlm 27–42.

Vatcheva, K.P., Lee, M., McCormick, J.B, & Rahbar, M.H. (2016). Multicollinearity in Regression Analysis Conducted in Epidemiologic Studies. Epidemiology: Open Access, 06(02). doi:10.4172/2161-1165.1000227.

Zeileis A. (2005). dynlm: Dynamic linear regression [R package]. CRAN.

Zunara E, Achsani N. A, Hakim D. B, Sembel R. (2022). The Effect of Rational and Irrational Sentiments of Individual and Institutional Investors on Indonesia Stock Market. Jurnal Aplikasi Bisnis dan Manajemen.

Most read articles by the same author(s)