GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION DENGAN FUNGSI KERNEL FIXED GAUSSIAN PADA KEMISKINAN JAWA TENGAH

Authors

  • Wulandari Wulandari BPS

DOI:

https://doi.org/10.29244/ijsa.v2i2.189

Keywords:

poverty, binary response, geographically weighted logistic regression

Abstract

Poverty alleviation is a problem faced by many countries in the world, included Indonesia. Poverty in Indonesia still relatively high. Poverty is one indicator of welfare. In general, the decline in poverty means that people's welfare increasing. Poverty is a multi-dimensional problem, which involves various microeconomic and macroeconomic factors, including the influence of the surrounding region. Modeling with geographically weighted regression (GWR) accommodates heterogeneous effects of independent variables on the dependent variable and produces a local parameter estimates. Central Java has the second highest poverty rate among provinces in Java. This study will model poverty in Central Java with a model that accommodates the influence of the surrounding region, named Geographically Weighted Logistic Regression (GWLR). Poverty modeling in Central Java with GWLR, in general, literacy rates (AMH), per capita GRDP, and Labor Force Participation Rate (TPAK) significantly affected poverty in Central Java with values that varied between districts / cities.

Downloads

Download data is not yet available.

References

Agresti, A. (2002). An introduction to categorical data analysis. Wiley.

Atkinson, P. M., German, S. E., Sear, D. A., & Clark, M. J. (2003). Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis, 35(1), 58-82.

Badan Pusat Statistik. (2017). Statistik Pendidikan Provinsi Jawa Tengah 2017. Semarang: Badan Pusat Statistik

Badan Pusat Statistik. (2018). Profil Ketenagakerjaan Provinsi Jawa Tengah Hasil Sakernas Agustus 2017. Semarang: Badan Pusat Statistik

Fotheringham, A.S., Brunsdon C., Charton, M. (2002). Geographically Weighted Regression, The Analysis of Spatially Varying Relationships. Canada: John Wiley & Sons

Gujarati, D. N. (2004). Basic econometrics. Tata McGraw-Hill Education.

Prayetno, P. (2013). Kausalitas Kemiskinan terhadap Perbuatan Kriminal (Pencurian). Media Komunikasi FIS, 12(1).

Setiyorini, A. (2017). Pemodelan Tingkat Kemiskinan Pulan Jawa dengan Metode Geographically Weighted Lasso. Tesis: Universitas Padjajaran

Published

30-11-2018

How to Cite

Wulandari, W. (2018). GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION DENGAN FUNGSI KERNEL FIXED GAUSSIAN PADA KEMISKINAN JAWA TENGAH. Indonesian Journal of Statistics and Its Applications, 2(2), 101–112. https://doi.org/10.29244/ijsa.v2i2.189

Issue

Section

Articles