PEMODELAN POISSON RIDGE REGRESSION (PRR) PADA BANYAK KEMATIAN BAYI DI JAWA TENGAH

Authors

  • Wulandari Wulandari Badan Pusat Statistik Kabupaten Wonosobo, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v4i2.555

Keywords:

infant mortality, multicollinearity, poisson ridge regression

Abstract

The decline of infant mortality is one of the targets of the Indonesian government in the health sector, including the Government of Central Java. To achieve this goal, it is necessary to identify factors that affect many infant mortalities in the district/city of Central Java. Infant mortalities are count data, so Poisson regression is commonly used. The data in the study showed the existence of multicollinearity in several predictor variables, so an appropriate model was needed. Poisson Ridge Regression (PRR) is a Poisson modeling that accommodates multicollinearity. In this study, the PRR model was used to model infant mortality in Central Java district/city. The results showed that the parameter estimation of the PRR model was slightly different than the estimated Poisson regression model. Modeling infant mortality with the PRR model, out of five predictor variables, three variables harmed many infant deaths, while the other two variables had a positive effect on many infant deaths.

Downloads

Download data is not yet available.

References

[BPS] Badan Pusat Statistik. (2016). Provinsi Jawa Tengah Dalam Angka 2016. Semarang (ID): BPS Jawa Tengah.

Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data (Vol. 53). Cambridge university press.

[Dinkes] Dinas Kesehatan Jawa Tengah. (2015). Profil Kesehatan Provinsi Jawa Tengah Tahun 2015. Semarang: Dinkes Jawa Tengah di akses darihttp. Semarang (ID): Dinas Kesehatan Jawa Tengah.

Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons.

Gujarati, D. N. (2009). Basic econometrics. Tata McGraw-Hill Education.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55–67.

Månsson, K., & Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4): 1475–1481.

Muniz, G., & Kibria, B. G. (2009). On some ridge regression estimators: An empirical comparisons. Communications in Statistics—Simulation and Computation®, 38(3): 621–630.

O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5): 673–690.

Downloads

Published

31-07-2020

How to Cite

Wulandari, W. (2020). PEMODELAN POISSON RIDGE REGRESSION (PRR) PADA BANYAK KEMATIAN BAYI DI JAWA TENGAH. Indonesian Journal of Statistics and Its Applications, 4(2), 392–400. https://doi.org/10.29244/ijsa.v4i2.555

Issue

Section

Articles