KAJIAN PENGARUH PENAMBAHAN INFORMASI GEROMBOL TERHADAP PREDIKSI AREA NIRCONTOH PADA DATA BINOMIAL

Authors

  • Beny Trianjaya Badan Pusat Statistik, Indonesia
  • Anang Kurnia Department of Statistics, IPB University, Indonesia
  • Agus M Soleh Department of Statistics, IPB University, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v4i4.333

Keywords:

binomial, clustering, glmm, small-area, unemployment

Abstract

Employment data is one of the important indicators related to the development progress of a country. Labor conditions in the territory of Indonesia can only be compared between times through the Survei Angkatan Kerja Nasional (Sakernas) data. Data generated from Sakernas and published by BPS is the number of employed and unemployed. The obstacle in estimating the semester unemployment rate at the regency/municipality level is the lack of a number of examples. One of the indirect estimates currently developing is small area estimation (SAE). This study developed the generalized linear mixed model (GLMM) by adding cluster information and examines the development of modifications with several model scenarios. The purpose of this study was to develop a prediction model for basic GLMM on a small area approach by adding cluster information as a fixed effect or random effect. The simulation results show that Model-2, a model that adds a fixed effect k-cluster and also adds a mean from the estimated effect of random areas in the sample area, is the best model with the smallest relative bias (RB) and Relative root mean squares error (RRMSE). This model is better than the basic GLMM model (Model-0) and Model-1 (a model which only adds a mean from the estimated random effect area in the sample area). Model-2 is applied to estimate the proportion of unemployed sub-district level in Southeast Sulawesi Province. Estimating the proportion of unemployed with calibration Model-2 produced an estimated aggregation of the unemployment proportion of Southeast Sulawesi Province at 0.0272. These results are similar to BPS (0.0272). Thus, the results of the estimated proportion of unemployment at the sub-district level with a calibration Model-2 can be said to be feasible to use.

Downloads

Download data is not yet available.

References

Anisa, R., Kurnia, A., & Indahwati. (2014). Cluster information of non-sampled area in small area estimation. IOSR J Math, 10(1): 15–19.

[BPS] Badan Pusat Statistik. (2016). Pedoman Pencacahan Sakernas Semesteran 2016. Jakarta (ID): BPS.

[BPS] Badan Pusat Statistik Provinsi Sulawesi Tenggara. (2017). Keadaan Ketenagakerjaan Provinsi Sulawesi Tenggara 2016. Kendari (ID): BPS Provinsi Sulawesi Tenggara.

Ghaniswati, R. (2019). Model pendugaan area kecil untuk proporsi penduduk miskin level desa (studi kasus proporsi penduduk miskin di Kabupaten Lembata) [tesis]. Bogor (ID): IPB University.

Kurnia, A. (2009). Prediksi terbaik empirik untuk model transformasi logaritma di dalam pendugaan area kecil dengan penerapan pada data susenas [disertasi]. Bogor (ID): IPB University.

Rao, J., & Molina, I. (2015). Small area estimation. New York (US): John Wiley and Sons.

Sadik, K. (2009). Metode prediksi tak-bias linear terbaik dan bayes berhierarki untuk pendugaan area kecil berdasarkan model state space [disertasi]. Bogor (ID): IPB University.

Sundara, V. Y., Sadik, K., & Kurnia, A. (2017). Cluster information of non-sampled area in small area estimation of poverty indicators using Empirical Bayes. AIP Conference Proceedings, 1827(1), 020026. AIP Publishing LLC.

Yudistira, Y., Kurnia, A., & Soleh, A. M. (2018). Binomial regression in small area estimation method for estimate proportion of cultural indicator. Indonesian Journal of Statistics and Its Applications, 2(2): 56–62.

Downloads

Published

24-12-2020

How to Cite

Trianjaya, B., Kurnia, A., & Soleh, A. M. (2020). KAJIAN PENGARUH PENAMBAHAN INFORMASI GEROMBOL TERHADAP PREDIKSI AREA NIRCONTOH PADA DATA BINOMIAL. Indonesian Journal of Statistics and Its Applications, 4(4), 566–578. https://doi.org/10.29244/ijsa.v4i4.333

Issue

Section

Articles