ANALISIS SPASIAL KETERTINGGALAN DAERAH DI INDONESIA TAHUN 2018 MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION

Authors

  • Tata Pacu Maulidina Politeknik Statistika STIS, Indonesia
  • Siskarossa Ika Oktora Politeknik Statistika STIS, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v4i3.690

Keywords:

geographically weighted logistic regression, regional development, regional backwardness, spatial analysis, underdeveloped region

Abstract

Development inequality in Indonesia has led the developed and underdeveloped regions. Regional backwardness caused by high inequality must be handled properly to prevent negative impacts on national stability. But in fact, the handling of underdeveloped regions is only effective in Western Indonesia, while in Eastern Indonesia tends to be not optimal. This study aims to explore regional backwardness in Indonesia and examines the factors that influence it. Based on data, underdeveloped regions tend to cluster in eastern Indonesia, and the independent variables have large variations between regions. This indicates dependence and spatial heterogeneity. Therefore, this study applies spatial analysis using the Geographically Weighted Logistic Regression (GWLR) method. GWLR shows better performance in modeling the regional backwardness in Indonesia compared to its global model (binary logistic regression). This study provides a local model for each district/city that can be used by local governments to implement more effective policies based on factors that do have significant effects on regional backwardness.

Downloads

Download data is not yet available.

References

[AfDP] AfDP, OECD, & UNDP. (2015). The African Economic Outlook 2015: Regional Development and Spatial Inclusion. AfDP, OECD, UNDP.

Anselin, L. (1988). Spatial Econometrics: Methods and Models (Vol. 4). Springer. https://doi.org/10.1007/978-94-015-7799-1

Atkinson, P. M., German, S. E., Sear, D. A., & Clark, M. J. (2003). Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression. Geographical Analysis, 35(1), 58–82. https://doi.org/10.1111/j.1538-4632.2003.tb01101.x

Bappenas. (2017). Prakarsa Pemerintah Daerah dalam Upaya Pengurangan Kesenjangan Wilayah dan Pembangunan Daerah. Jakarta (ID): Bappenas.

Becker, G. S., Philipson, T. J., & Soares, R. R. (2005). The Quantity and Quality of Life and the Evolution of World Inequality. THE AMERICAN ECONOMIC REVIEW, 95(1), 1-29.

[BPS] Badan Pusat Statistik. (2019). Produk Domestik Regional Bruto Provinsi-Provinsi di Indonesia Menurut Pengeluaran: 2014-2018. Jakarta (ID): Badan Pusat Statistik.

Breusch, T. S., & Pagan, A. R. (1979). A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica, 47(5), 1287–1294.

Damarsari, R., Juniadi, & Yulmardi. (2015). Kinerja Pembangunan Daerah Kabupaten/Kota di Provinsi Jambi. Jurnal Prespektif Pembiayaan dan Pembangunan Daerah, 2(3), 161–172.

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis od Spatially Varying Relationships. John Wiley & Sons.

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression (second edition). John Wiley & Sons.

Husna, L. N., & Sarpono, S. (2013). Spatial Small Area Estimation for Determination of Underdeveloped Villages in the Province of YOGYAKARTA (DIY) in 2011. Journal of Indonesian Economy and Business, 28(1), 45-61.

Kuncoro, M. (2004). Otonomi dan Pembangunan Daerah. Jakarta (ID): Erlangga.

Kutner, M. H. (Ed.). (2005). Applied linear statistical models (5th ed). McGraw-Hill Irwin.

Melliana, A. & Zain, I., 2013. Analisis Statistika Faktor yang Mempengaruhi Indeks Pembangunan Manusia di Kabupaten/Kota Provinsi Jawa Timur dengan Menggunakan Regresi Panel. Jurnal Sains dan Seni, 2(1), 237-242.

Nakaya, T., Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2005). Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine, 24(17), 2695–2717. https://doi.org/10.1002/sim.2129

Oktora, S. I. (2015). Analisis Multivariate Adaptive Regression Splines (MARS) pada Prediksi Ketertinggalan Kabupaten Tahun 2014. Jurnal Aplikasi Statistika & Komputasi Statistik, 7(2), 14-14.

Purwandari, T., & Hidayat, Y. (2017). Pemodelan Ketertinggalan Daerah di Indonesia Menggunakan Analisis Diskriminan. Pemodelan Ketertinggalan Daerah di Indonesia Menggunakan Analisis Diskriminan, 194–200. Surakarta (ID): Universitas Muhammadiyah Surakarta

Saefuddin, A., Setiabudi, N. A., & Fitrianto, A. (2012). On comparison between logistic regression and geographically weighted logistic regression: with application to Indonesian poverty data. World Applied Sciences Journal, 19(2), 205-210.

Syamsuddin. (2011). Perhitungan Indeks Gini Ratio dan Analisis Kesenjangan Distribusi Pendapatan Kabupaten Tanjung Jabung Barat Tahun 2006-2010. Jurnal Paradigma Ekonomika, 1(4), 83–102.

Todaro, M. P., & Smith, S. C. (2015). Economic development (Twelfth edition). Pearson.

[WEF] World Economic Forum. (2018). The Inclusive Development Index 2018 : Summary and Data Highlights. Diunduh dari https://www.weforum.org/reports/the-inclusive-development-index-2018.

Downloads

Published

20-12-2020

How to Cite

Maulidina, T. P., & Oktora, S. I. (2020). ANALISIS SPASIAL KETERTINGGALAN DAERAH DI INDONESIA TAHUN 2018 MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION. Indonesian Journal of Statistics and Its Applications, 4(3), 528–544. https://doi.org/10.29244/ijsa.v4i3.690

Issue

Section

Articles