Classification of Rice Growth Phase Using Regression Logistic Multinomial Model and K-Nearest Neighbors Imputation on Satellite Data

Main Article Content

Fayyadh Ghaly
Yenni Kurniawati
Nonong Amalita
Dina Fitria

Abstract

One of the efforts made by the government to maintain food security is to provide statistical data on rice production through accurate calculation of harvest areas using the area sampling framework approach. Although area sampling framework surveys produce accurate estimates, the costs required are quite high when applying this method. To overcome this problem, one solution that can be applied is to utilize satellite imagery to monitor the greenness index of plants using the enhanced vegetation index. However, in real conditions, the Landsat-8 optical satellite is susceptible to cloud cover, which results in missing data. This study aims to model the phase of rice plants using the regression logistic multinomial model by utilizing Landsat-8 satellites and k-nearest neighbors imputation handling to overcome missing data. The results showed that the model had varying performance in each phase, with an average balanced accuracy of 66.45%. This figure shows that the model can classify the area sampling framework data imputed using the k-nearest neighbors imputation method well. The model shows optimal performance in the late vegetative and generative phases but is less effective in detecting the harvest, puso, and non-rice paddy phases.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Ghaly F, Kurniawati Y, Amalita N, Fitria D. Classification of Rice Growth Phase Using Regression Logistic Multinomial Model and K-Nearest Neighbors Imputation on Satellite Data. IJSA [Internet]. 2025 Jun. 24 [cited 2025 Nov. 30];9(1):1-9. Available from: https://journal-stats.ipb.ac.id/index.php/ijsa/article/view/1268
Section
Articles

References

BPN. (2024). Situasi Konsumsi Pangan Nasional Tahun 2023. In Badan Pangan Nasional. Jakarta Selatan: Badan Pangan Nasional.

BPS. (2018). Upaya Perbaikan Data Padi Dengan Metode Kerangka Sampel Area (KSA) 2018.

Fadlil, A., Herman, & Praseptian M, D. (2022). K Nearest Neighbor Imputation Performance on Missing Value Data Graduate User Satisfaction. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4): 570–576. https://doi.org/10.29207/resti.v6i4.4173

Kurniawati, Y. (2023). Penduga Area Kecil Berhirarki untuk Luas Panen Padi Berbasis Survei KSA-BPS dengan Memanfaatkan Citra Satelit LANDSAT 8. 1–130.

Kurniawati, Y., Wijayanto, H., Kurnia, A., Dirgahayu D, D., & Susetyo, B. (2024). Rice phenology monitoring via ensemble classification for an extremely imbalanced multiclass dataset of hybrid remote sensing. Remote Sensing Applications: Society and Environment, 35: 101246. https://doi.org/10.1016/J.RSASE.2024.101246

Kurniawati, Y., Wijayanto, H., Kurnia, A., Domiri, D. D., & Susetyo, B. (2023). Selection of Multinomial Logit Models Based on Accuracy Reclassification of the Area Sampling Frame Labels. Science and Technology Asia, 28(2): 18–30. https://doi.org/10.14456/scitechasia.2023.23

Marsuhandi, A. H., Soleh, A. M., Wijayanto, H., & Domiri, D. D. (2020). Pemanfaatan Ensemble Learning Dan Penginderaan Jauh Untuk Pengklasifikasian Jenis Lahan Padi. Seminar Nasional Official Statistics, 2019(1): 188–195. https://doi.org/10.34123/semnasoffstat.v2019i1.247

Prasetyo, O. R., Kadir, & Amalia, R. R. (2020). A pilot project of area sampling frame for maize statistics: Indonesia s experience. Statistical Journal of the IAOS, 36(4): 997–1006. https://doi.org/10.3233/SJI-200743

Ruslan, K. (2019). Improving Indonesia’s Food Statistics through the Area Sampling Frame Method. Center for Indonesian Policy Studies, 34.

Sinabutar, J. J., Sasmito, B., & Sukmono, A. (2020). Studi Cloud Masking Menggunakan Band Quality Assessment, Function of Mask Dan Multi-Temporal Cloud Masking Pada Citra Landsat 8. Jurnal Geodesi Undip Agustus, 9(3): 51–60.

Triscowati, D. W., Sartono, B., Kurnia, A., Domiri, D. D., & Wijayanto, A. W. (2019). Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest. 11311: 10. https://doi.org/10.1117/12.2547216

Umar, N., & Gray, A. (2023). Comparing Single and Multiple Imputation Approaches for Missing Values in Univariate and Multivariate Water Level Data. Water (Switzerland), 15(8): 1–21. https://doi.org/10.3390/w15081519