Forecasting Foreign Tourists to West Sumatera Before and After COVID-19 Using ARIMA and Prophet and Its Impact on Foreign Exchange

Main Article Content

Cindy Resha Alandra
Dony Permana
Dodi Vionanda
Dina Fitria

Abstract

Foreign exchange earnings are very important for the improvement of the economy in Indonesia, where these foreign exchange earnings can be obtained through the tourism sector. One of the provinces in Indonesia that is a major tourist destination is West Sumatra. The number of foreign tourists coming to West Sumatra is influenced by various factors, one of which is the COVID-19 pandemic that resulted in a decrease in visitor numbers. The research was conducted to forecast the number of foreign tourists to West Sumatra using the ARIMA and Prophet methods, as well as to calculate the loss and foreign exchange earnings and the forecasting accuracy of both methods. The data for this study was taken from the BPS West Sumatra website regarding the number of foreign tourists to West Sumatra from 2015 to 2024. In this data, forecasting for the year 2020 will be done using the ARIMA method and forecasting for the year 2025 using the Prophet method. The data in this study tends to be stable before the pandemic, making the ARIMA method suitable. Meanwhile, after the pandemic, the data fluctuated, making the Prophet method suitable. From the results obtained, the best ARIMA model is ARIMA (1, 0, 1). The forecasting accuracy is 1.82% with an estimated foreign exchange loss of $52,095,688 for the year 2020. Meanwhile, using the Prophet method, the forecasting accuracy obtained is 12.13% with an estimated foreign exchange revenue of $208,546,812 for the year 2025.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Alandra CR, Permana D, Vionanda D, Fitria D. Forecasting Foreign Tourists to West Sumatera Before and After COVID-19 Using ARIMA and Prophet and Its Impact on Foreign Exchange. IJSA [Internet]. 2025 Dec. 30 [cited 2026 Jan. 9];9(2):157-68. Available from: https://journal-stats.ipb.ac.id/index.php/ijsa/article/view/1269
Section
Articles

References

Agustina, S. (2023). Peramalan Curah Hujan di Kota Medan Menggunakan Singular Spectrum Analysis (SSA). Skripsi. Padang: Universitas Negeri Padang.

Auliya, Y. A., Nurdiansyah, Y., & Astuti, A. P. (2023). Peramalan Jumlah Pengunjung Objek Wisata Gumul Paradise Island Kabupaten Kediri Menggunakan Metode Prophet. Informatics Journal. Vol. 8, No. 1.

Badan Pusat Statistik. (2024). Jumlah Wisatawan Mancanegara (Wisman) yang Datang ke Sumatera Barat (Bulanan). Sumatera Barat: Badan Pusat Statistik.

Bangun, O. B. (2024). Peran Pariwisata dalam Peningkatan Devisa Negara. Circle Archive Journal. Vol. 1, No. 5.

Chang, P.-C., Wang, Y.-W., & Liu, C.-H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86–96. doi:10.1016/j.eswa.2005.11.021.

Fauzani, S. P., & Rahmi, D. (2023). Penerapan Metode ARIMA Dalam Peramalan Harga Produksi Karet di Provinsi Riau. Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT). Vol. 2, No. 4, pp. 269-277.

Hablinawati, L., & Nugraha, J.(2024). Peramalan Nilai Tukar Petani di daerah Istimewa Yogyakarta Menggunakan ARIMA. Emerging Statistics and Data Science Journal. Vol. 2, No. 1.

Hartati. (2017). Penggunaan Metode Arima dalam Meramal Pergerakan Inflasi. Jurnal Matematika, Saint, dan Teknologi. Vol. 8, No. 1, pp. 1-10.

Makridarkis, S., Wheelwright, S. C., & McGee, V. E. (1978). Forecasting: Methods and Application, Second Edition. Canada: John Wiley & Sons, Inc.

Oktavia, F., & Witanti, A. (20204). Implementasi Prophet Forecasting Model Dalam Prediksi Kualitas Udara Daerah Istimewa Yogyakarta. Jurnal Teknik Informatika dan Sistem Informasi. Vol. 11, No. 1, pp. 64-74.

Palembangan, I. T., Kumaat, R. J., & Mandeij, D. (2020). Analisis Pengaruh Tingkat Bunga Acuan BI, Sibor, dan Nilai Tukar Rupiah Terhadap Cadangan Devisa Di Indonesia (2011:Q1-2019:Q4). Jurnal Berkala Ilmiah Efisiensi. Vol. 20, No. 02.

Rahmawati, E. Y., Ismanto, B., & Sitorus, D. S. (2020). Analisis Pengaruh Ekspor Dan Kurs Terhadap Cadangan Devisa Indonesia Tahun 1990-2019. Jurnal Ecodunamika. Vol. 3, No.2.

Soraya, S., Aziza, I. F., Juanda, M. R. U., Primajati, G., & Rahima, P. (2024). Peramalan Jumlah Kunjungan Wisatawan di Provinsi Nusa Tenggara Barat (NTB) Menggunakan Metode Arima Box-Jenkins. VARIANSI: Journal of Statistics and Its Application on Teaching and Research. Vol. 6, No. 1, pp. 35-43.

Tarigan, K. W. P. (2024). Peramalan Penjualan Tesla Menggunakan Metode Holt-Winters Dan Prophet: Analisa Tren dan Musiman Dalam Industri Mobil Listrik. Tesis Sarjana (S-1). Medan: Universitas Mikroskil.

Taylor, SJ., & Letham, B. (2018). Forecasting at Scale. The American Statistician. Vol. 72, No. 1, pp. 37–45.

Tutupoho, A., Laitupa, A. A., & Duwila, U. (2024). Analysis Of Economic Growth Forecasting In Maluku Province Using Arima Method. Management Studies and Entrepreneurship Journal. Vol. 5, No. 2.

Ulfa, N. (2022). Analisis Faktor-Faktor yang Mempengaruhi Cadangan Devisa di Indonesia. Skripsi. Aceh: Universitas Islam Negeri Ar-Raniry Banda Aceh.

Wei,William W.S. (2006). TimeSeries Analysis Univariate and Multivariate Methode Second Edition. Canada: Pearson Eddison Wesley.